Measure Estimation in the Barycentric Coding Model:
Geometry, Statistics, and Algorithms

James M. Murphy
Department of Mathematics

October 1, 2022

Tufts

UNIVERSITY




Shuchin Aeron, ECE

Collaborators at Tufts

Ruyjie Jiang, ECE Abty Tasissa, Math

Matt Werenski, CS

UNIVERSITY



Learning in High Dimensions is Hard

¢ High-dimensional problems (e.g. many variables relative to
number of observations) are hard for machine learning.

® ‘The curse of dimensionality dooms interence in the absence ot
structural assumptions on the data:

If {x;}"_, is a uniform, i.i.d. sample from [0,1]7,
then x; is distance ~n~D from 1ts nearest neighbor.

® Pairwise distances may not be informative—nothing is close to
anything else.
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Classical Approach to Breaking Curse

Popular model: data are near a low-dimensional subspace or
manifold.

That is, the data actually live near M2 R where one aims
to develop methods that depend exponentially on d .

When d < D, one may hope to break the curse.
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“Think Globally, Fit Locally”

How to get methods that depend on manifold dimension rather
than ambient dimension?

Main Idea of

information (e

Manifold Learning: local Euclidean
.g., nearest neighbor calculations) can be

leveraged to make global inferences.

Data 1s locally

low dimensional. so “zoom in’’ finely enough for
, y g

this to be the limiting factor.

This is typical done with Euclidean distances and a graph is
constructed, from which global information can be gleaned:

geodesics, PD!
embeddings,..

H /diffusions on graphs, structure-preserving
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Beyond Euclidean Distances

® Methods based on local Fuclidean distances may be insufficient
to capture the geometry of certain data.

* Toy example: black and white images with single white pixel:

® Hverything 1s equally far in |
any graph metric.

Huclidean distance, and therefore in

® Need to capture the distance between the support of these images.



Data as Measures: Wasserstein-2 Metric

® Jet Pz,aC(Rd) denote the space of absolutely continuous measures
(1.e., having density with respect to the Lebesgue measure) with finite
second moment.

® For two measures U,V € PQ,aC(Rd), the Wasserstein-2 metric 1s

WEn) = min [ (|T(2) - al3du(a)

where the minimization is over all maps 7" : Re —s RY that
pushforward @ onto v:

THp=v < V[B] — M[T_l(B)] for all Borel sets B .
Tufts



Optimal Transport Maps

e Pushforwards transfer mass from one distribution to anothet.

T
SN

»
-
.
o

A={x:T(x)EB}

® The T* realizing W5 (u,v) = / | T*(x) — x||5dp(z)
Rd

is the optimal transport map. It pushes forward in the
“most efficient” way.

Image Source: M. Thorpe (https://www.math.cmu.edu/~mthorpe/OTNotes) TNy



https://www.math.cmu.edu/~mthorpe/OTNotes

Existence and Generalization

® This is not well-defined for general measures, and this Monge
formulation is less tractable than the Kanforovich tormulation:

W3 (p,v) =

(p,v) = {’y ' R%% - R

min / Iy — 2l 2d(z, ),
IRd

YEI(1,v)

/Rd v(z,y)dr = v(y), /Rd v(x,y)dy = M(x)} |

® Under our assumptions, these formulations are equivalent and
a unique 7 exists. We'll return to the Kantorovich form when

computing.
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Averaging in V> : Barycenters

p
® [ct Ap{)\()\l,,)\p)ERpAzZO,Z)\Zl}

1=1

e For measures {fti};_q C PQ,aC(Rd) and coordinates A € AP
define the Wasserstein-2 barycenter as

vy = argmin A W2 U, i)
7/67)2 ac(Rd) Z

® This is well-defined and unique under our assumptions.

® V) is the “right” way of averaging in the space of measures.

Tufts
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Barycenters Preserve Structure

Ny

Euclidean Mixture Wasserstein Barycenter
p 1 p
. 2
Z i [ argmin o Z AW (v, i)
i—1 vEP2,ac(RY) < 4
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The Synthesis Problem

® ‘The synthesis problem 1s solving

1
arg min - — Z MW (v, ;).

VEPQ aC(Rd) 2 i=1

Existence and uniqueness theory, consistent estimation procedures,
and fast numerical schemes have been developed in the past decade
(McCann; Agueh and Carlier; Alvarez-Esteban et al.; Bigot and
Klein; Claici, Chien, and Solomon; Schmitz et al.; Yang et al. .
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The Barycentric Coding Model

® Let Bary({ui}i—q) = {va : A € AP} be the set of all
barycenters that can be generated from {u;};_; .

e We denote by the barycentric coding model/ (BCM) the identification

of a2 measure

po € Bary({pi}i_1)

with its coordinates )\ € AP .

® Bary({u;},_,) can be thought of as the “span™ of the
reference measures, but with respect to the geometry of

Wasserstein space.

Tufts
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The Analysis Problem

¢ (Given a measure [ and
reference measures {6 }r_q |
the analysis problem 1s solving

T2
arg min W5 (po, V) -
A EAP

o If o € Bary({pi}i—y),
then:

min W3 (uo, V)
N CAP 2(:“7

® Some computational methods known (Bonneel, Peyré, and Cuturi)
but no existence and uniqueness results nor rigorous estimation

procedures.
Tufts
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BCM as Low-Parameter Model

e Theset Bary({u;}:_;) = {vr : A € AP} can be interpreted

as a p-parameter subspace in the space of measures.

® This can be contrasted with a linear subspace, in terms of
number of parameters needed to uniquely specity an element.

® Unlike linear subspaces, however, there 1s not a notion of
orthogonal projection to quickly compute coordinates.

§ Tufts



Basic Questions

¢ Unique representations in Bary({u;};—,) = {va : A € AP}?

vl

* 10 Not always, but perhaps generically.

e How to check if o € Bary({u; le) P

® More generally, how to solve

112
arg min W3 (ug, vx)?
A EAP

Tufts
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BCM as Quadratic Program

Theorem. (Aeron, Jiang, M., Tasissa, Werenski) Suppose {u;}._, are sufficiently reqular. Then py €

Bary({u;}5_,) if and only if

min AT A\ =0,
AEAP

where A € RP*P 4s given by A;; = / (Ti(z) — Id(z), T (x) — Id(z))dpo(x) for T; the optimal transport map
Rd

between g and p;. Furthermore, if the minimum value is 0 and Ay is an optimal argument, then pug = vy, .

e T,(x)— Id(x)is the displacement of the vector zz € R? when
transported by the map 7; which optimally transports fo to i .

o (T)(z)—1Id(z),T;(x) —Id(x)) can be thought of as the angle
between the displacement associated to the optimal transport map
between o to p; with that of po to j.

® Integrating with respect to (o quantifies the average angle
between displacements.

Tufts
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Proof Sketch and Interpretation

¢ The main idea is to understand the minimizers of the variance

Jfunctional G, : Pg)aC(Rd) — R given by

p
Ai
Ga(v) = 3 S WE (v, 1),
1=1

p
® This has Fréchet derivative VG, (v) = — Z A (T; — 1d).
1=1

® Under regularity conditions on the optimal transport maps,
solutions to the synthesis problem occur at the critical points of
the Fréchet dertvative.

® Then the result follows by computing

VG (o)1 Tufts



Projection onto Barycentric Span?

® If ug ¢ Bary({u;}i_;) , we can still find the minimizer of
the quadratic form \ — AT AN\ .

* A natural question then is, does \, = arg min \? A\
approximate well AEAP

T2
arg min W3 (o, vx)?
A EAP

® In certain cases (d = 1; all measures are Gaussian, ...),
solving the quadratic program gives the exact projection!

Tufts
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OT in Practice: Entropic Regularization

* Giveniidsamples { X;}" .~ u, {Y;}, ~ v, the
discrete (Kantorovich) W5 problem solves

n n
argmin cgren )Y [1X5 = Yells -

w1=1 j:]. k=1
rl1=1

® This has complexity in 7 at least O(n?>)—too slow.

®* 'To improve complexity, one can consider entropic
regularization: for € > 0, solve:

T mn
. N\ N\ 2
arg min ;e pnxn d > N1 X; = Yill3 - ik + emjn log m
r1=1 j=1 k=1
rl1=1

Tufts
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Entropic Estimation of BCM Coordinates

Algorithm 1 Estimate A

Input: i.i.d. samples { X1, ..., Xon} ~ po, {{Y7,...,Y,'} ~ p; : it = 1,..., p}, regularization parameter ¢ > 0.
for:=1,....p do

Set M* € R™™ with M}, = H1X; = Y3

Solve for ¢* as the optimal ¢ in

1 1
frocmn ij T ng
=1 k=1
5 D oxp ((fy + gx — Mjy) /<)
7,k

n

iy 1
> Yiewn 6/~ 5lle — Vi) )
Define Tz(a:) = =L

D exp (%(gi(m - %Hx - m%)) |

1=1

end for
Set A € RP*XP to be the matrix with entries

Return \ = arg min AT AN.
AEAP

Tufts
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Consistency of Entropic Estimation

Theorem. (Aeron, Jiang, M., Tasissa, Werenski) Let i,j € {1,...,p} and suppose that p,, i, po are
supported on bounded domains and that the maps T; and T are sufficiently reqular. Let Xy, ..., Xop ~

po, Y1, Y0 ~ Wi, Z1,..., 4y ~ pj. For an appropriately chosen e, let T; and Tj be the entropic maps
computed using { X; i1, {Yi}_1,{Z;}?_ 1. Then we have

2n
1 N ~
E Az’j — g k;|_1<TZ(Xk) — Xk,Tj<Xk) — Xk> ]

a+1

5 T+n m\/]ogn

where d = 2[d /2], and a < 3 depends on the reqularity of optimal maps.

Corollary. (Aeron, Jiang, M., Tasissa, Werenski) Let \ be the random estimate obtained from the Algorithm.

Suppose that A has an eigenvalue of 0 with multiplicity 1 and that M. € AP realizes NI A\, = 0. Then under
the assumptions of the Theorem,

_ a-+1
+n  4@+atD) 4 /logn.

El A =23] <

aw

® Solution to the sample-driven, entropic problem converges to
the true one.

® Rate depends on dimensionality and smoothness. Tufts
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Application: Covariance Estimation

» Consider sampling from a measure g € Bary({u;};_;) for
known zero mean Gaussians {f4; };_1 .

* Then Mo 1s necessarily Gaussian. In fact, its covariance matrix

1s structured.

Corollary. For i = 1,...,p, let u; = N(0,S;) with S; € Si+. Then pg is a barycenter if and only

if po = N(0,S50) for some Sy € §i+, and minyear AT AN = 0, where the matriz A is given by A =
1/2
Tr ((C; — I)(C; — 1)Sy) for C; = 50_1/2 (55/257;53/2) Sy /7. Furthermore, if the minimum value is zero

—~1/2
and Ay 15 a optimal argument, then pug = vy,

® We can plug in the empirical covariance matrix for Sp, solve the
QP above, and use the learned coeftficients to estimate the
covariance matrix of the measure observed only through samples.

Tufts
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Wasserstein-2 Distance

Numerical Results
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Supervised NLP: Documents as Distributions

* We can consider a written document as a probability
distribution 1n the space of words.

e Under this model, we can consider documents of different
classes (e.g., sclence documents, sports documents,...) and use
the BCM to decompose a new document using representatives
of these classes.

* The corresponding coefficients can be used to determine a
label for the new document.

* Note that standard word embeddings can be used to reduce
the dimensionality and improve the learning rate ot the BCM
coordinates.

Tufts
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Classification with Few Labels

News 20 Topic Prediction
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Ongoing Research and Open Problems

Representational capacity of {u; le as p — oo ? Note

that 1f the measures are Gaussian, the BCM is not a universal
approximatot!

Regularized representation and dictionary learning.

Can we efficiently estimate A without estimating the OT
maps? All we need are angles, not the maps themselves.

Connections to linear OT framework.

Tufts
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