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Unsupervised Learning

Unsupervised learning: infer 
structure from data without 
access to training data, i.e. 
examples belonging to particular 
classes. 

Clustering:  unsupervised 
learning in which the goal is to 
label points as belonging to a 
given class. 

Labeling: Which       were generated from      ?   
Number of  Clusters: Can we estimate      ?            
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Spectral Clustering I
Idea: embed data into a lower-
dimensional space in a structure 
preserving way. 

Input:  

Step 1: Build a weight matrix  

for some metric             and    .   

Step 2: Compute the (graph) Laplacian 

x1, ..., xn ⇢ RD

d(·, ·) �

L = I �D� 1
2WD� 1

2

Dii =
nX

j=1

Wij ;Dij = 0, i 6= j.

U. Von Luxburg. “A tutorial on spectral clustering”. Statistics and Computing. 2007. 17(4):395-416.

Wij = e�d(xi,xj)
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Spectral Clustering II
Step 3: Compute eigenvalues of        

and associated eigenvectors  

Step 4: Embed the data as  

then run K-means.  Note 

Parameter Problems:   
• Dependence on parameters          .  
• Heuristic: 

L

0  �1  �2  ...  �n

�1, ...,�n.

�j(xi) := �j(i).
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Ultrametric Path Distances

• The distance between points       is the minimum over all paths between       of  the 
longest edge in the path. 

• Depending on the data     , this distance changes! 

• We are re-shaping the unit ball to respect the geometry of  the data.   

•      could be a complete graph (all points connected to all points) or a connected 
NN graph. 

• Looks hard to compute.  We will present a fast approximation algorithm. 

x, y x, y

X

Definition. For a discrete set X = {xi}ni=1 ⇢ RD, let G be the graph on X with edges given by the Euclidean
distance between points. For xi, xs 2 X, let P(xi, xs) denote the space of paths connecting xi, xs in G. The
longest leg path distance (LLPD) between xi, xs is:

d``(xi, xs) = min
{yj}L

j=12P(xi,xs)
max

j=1,2,...,L�1
kyj+1 � yjk2,

G
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LLPD Visualization 
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Euclidean Distance versus LLPD
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Low Dimensional, Large Noise (LDLN) Model

Low-dimensional

Large noise

ni i.i.d. draws from Unif(X i)
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n = n1 + . . .+ nK + ñ
nmin = min

1kK
nk

Definition. A set S ⇢ RD
is an element of Sd(, ✏0) for some  � 1 if it has finite d-dimensional Hausdor↵

measure, denoted by H
d
, is connected, and for some ✏0 > 0, it satisfies the following geometric condition:

8x 2 S, 8✏ 2 (0, ✏0), �1✏d 
H

d(S \B✏(x))

Hd(B1(0))
 ✏d .

� = min
k 6=k0

dist(X k,X k0)



Nearest Neighbors in LLPD and Denoising 

• In the LDLN model, points within clusters all have comparable 
distances, and points from different clusters are well separated. 

• We denoise points by removing all points whose distance to 
their             nearest neighbor exceeds some threshold     .   

•              are parameters. 

• This analysis, based on percolation theory, proves the weight 
matrix is nearly block constant.  

knse
th ✓

knse, ✓
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A. Little, M. Maggioni, and J.M. Murphy.  “Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms”. 
ArXic Preprint.  2017

Performance Guarantees

Theorem. (Little, Maggioni, M.) Under the LDLN data model and assumptions, suppose that the cardinality
ñ of the noise set is such that

ñ 
✓
C2

C1

◆ knseD
knse+1

n

D
d+1 (

knse
knse+1 )

min .

Let f�(x) = e
�x2/�2

be the Gaussian kernel and assume knse = O(1) and that maxi ni
nmin

= O(1). Let nmin be
su�ciently large enough and let ✓,� satisfy

C1n
� 1

d+1

min  ✓  C2ñ
�( knse+1

knse
) 1

D (1)

C3✓  �  C4� (2)

Let L be the LLPD Laplacian defined on the denoised data XN , that is, L = I � D
� 1

2WD
� 1

2 , where
Wij = f�(⇢``(xi, xj)). Then with high probability:

(i) the largest gap in the eigenvalues of L is �K+1 � �K .

(ii) spectral clustering with L with K principal eigenvectors achieves perfect accuracy on XN .

The constants {Ci}4i=1 depend on the geometric quantities but do not depend on n1, . . . , nK , ñ, ✓,�.



Numerical Implementation

• Recall computation appears hard, since space of  paths is large. 

• We propose an efficient approximation scheme, quasilinear in    . 

• Computing the first       eigenvectors of  the LLPD Laplacian is 

•        is the number of  neighbors in original graph. 
•        is related to accuracy of  approximation. 
•            is the cost of  a Euclidean nearest neighbor query. 

n

m

Big data regime (               takes a few minutes! ) n = 108

CNN

O(Cd
Dn log(n))

K

O(n(k1CNN +m(k1 _ log(n) _K
2)))

k1
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Columbia Object Image Library (COIL)
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• 16 classes, ambient dimensionality 1024, about 100 samples 
per class. 

• LLPD spectral clustering achieve 99+% accuracy, and 
correctly identifies that there are 16 classes.



Incorporating Nonlinear Geometry
Learn nonlinear geometry with a 
diffusion process                                    

Pij =
Wij
nP

`=1
Wi`

Wij =

(
e�

kxi�xjk
2
2

� , xi 2 NNk(xj),

0, else.

Diffusion Distances:

dt(xi, xj) =
nX

`=1

(P t
i` � P t

j`)
2µ`

⇡`
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Spectral Formulation
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Coordinates 
 

(�2,�3)

dt(xi, xj) =
nX

`=1

�2t
` (�`(i)� �`(j))

2

{(�i,�i)}ni=1 Spectral decomposition of  P
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Learning by Unsupervised Nonlinear Diffusion 
(LUND)

1.) Compute empirical density: 

2.) Find points that are     -far 
from higher density points: 

3.) Estimate modes as 
maximizers of: 

dt ⇢̃t(xi) =

8
<

:

min
{p(xj)�p(xi)}

dt(xi, xj), xi 6= argmax
i

p(xi),

max
xj

dt(xi, xj), xi = argmax
i

p(xi).

⇢t(xi) =⇢̃t(xi)/max
xj

⇢̃t(xj)

Dt(xi) = p(xi)⇢t(xi)

p0(xi) =
X

xj2NNk(xi)

e
�kxi�xjk

2
2

�2

p(xi) = p0(xi)/
nX

j=1

p0(xj)
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Learning by Unsupervised Nonlinear Diffusion 
(LUND)

Assign all points the same label as their     -nearest neighbor of  
higher density.

dt
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With fast nearest-neighbor look-ups, complexity is O(n log(n)DC
d)

D

d

n

— ambient dimension
— intrinsic dimension

— number of  data points
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Mathematical Guarantees

Let                        be the latent clusters in the data.X =
K[

k=1

Xk

Din = max
k

max
x,y2Xk

dt(x, y), Dbtw = min
k 6=k0

min
x2Xk,y2Xk0

dt(x, y) .

The constants                depend on the data.  More separation 
between clusters and cohesion within cluster lead to better 
constants.

{Ci}5i=1

Theorem. (Maggioni, M.) Let X =
SK

k=1 Xk and let P be a corresponding
Markov transition matrix on X, inducing di↵usion distances {Dt}t�0. Then
there exist constants {Ci}5i=1 � 0 such that the following holds: for any ✏ > 0,
and for any t satisfying C1 ln

�
C2
✏

�
< t < C3✏, we have

Din
t  C4✏, Dbtw

t � C5 � C4✏.
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Multiscale Equilibria I  

t = 0 t = 102

Diffusion distances from red point in log scale: 
small times lead to local mixing.  
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Multiscale Equilibria II

t = 108 t = 1016

Diffusion distances from red point in log scale: as time 
increases, mesoscopic equilibria, then global 
equilibrium is reached.  

�20



Mathematical Guarantees

M = {p(x) | 9k such that x = argmaxy2Xk
p(y)}

The more well-separated and internally cohesive the clusters are, 
the greater time range in which accuracy is assured.

Proofs base on analysis of  Markov matrices in relationship to 
near reducibility and mixing times. 
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HSI Clustering
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Spatial Regularization 

LUND LUND+Spatial Regularization
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Active Learning

O(1)
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Let                  be the two labeled 
points        -nearest to       .

x⇤
n1
, x⇤

n2
dt xn

Query for labels the minimizers of
Ft(xn) = |dt(xn, x

⇤
n1
)� dt(xn, x

⇤
n2
)|

Adding           training labels to perfect accuracy!

Active learning: We can ask for 
O(1) labels…who to query?
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Summary and Broad Future Directions
• The low-dimensional, high noise model allows to prove performance guarantees for 

clustering algorithms. 

• Efficient algorithms for data-dependent metrics allow to handle large numbers of  
data points in high dimensions. 

• Applicable to real-world data, including image datasets, remotely sensing signals,… 

• Future:  

• Mathematics: Investigate problems in discrete-to-continuum limits, 
multiscale hierarchies, metrics for graph construction, directed graphs… 

• Machine Learning:  Theoretical models for active learning, alternative 
diffusion constructions 

• Data Science and Interdisciplinary Collaboration: Develop algorithms 
and software for application to real data: remote sensing, medical signals, 
social media networks…
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Code:  https://jmurphy.math.tufts.edu/Code/

Contact:  jm.murphy@tufts.edu

Thanks for Your Attention!

Code and Contact Information
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