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Unsupervised Learning

Data to Cluster

Unsupervised learning: infer
structure from data without
access to training data, 1.¢.
examples belonging to particular
classes.

Clustering: unsupervised
learning in which the goal is to
label points as belonging to a
otven class.

K 3 K
21717---73771’\“#:2101«/%4‘#7 Zwkzl
k=1 k=1

Labeling: Which X were generated from [Lk?

Number of Clusters: Can we estimate /X ? T“fts
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Spectral Clustering I

Data to Cluster

Idea: embed data into a lowet-
dimensional space in a structure T e tms |
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Step 2: Compute the (graph) Laplacian
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Step 3: Compute eigenvalues of [,

Spectral Clustering 11

0< A S A <Ay

and associated eigenvectors

by,.... D,

“mbed the data as

Step 4:

Xy 2 ((I)l(ili’z), Cees (I)K(iliz))

then run K-means. Note

* Dependence on parameters o, K .

Dj(xi) := (7).

Parameter Problems:
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Ultrametric Path Distances

Definition. For a discrete set X = {z;}"_; C R, let G be the graph on X with edges given by the Euclidean
distance between points. For x;,xs € X, let P(x;,xs) denote the space of paths connecting x;,xs in G. The
longest leg path distance (LLPD) between x;,Ts is:

dpo(x;, Ts) = min max 11— Y
M( v S) {yj}leeP(xi,xs)jzl,Q ..... Ij—lHyJ_I_1 yJHQ?

* The distance between points , ¥y 1s the minimum over all paths betweenz,y of the
longest edge in the path.

* Depending on the data X, this distance changes!
* We are re-shaping the unit ball to respect the geometry of the data.

 § could be a complete graph (all points connected to all points) or a connected

NN graph.

* L.ooks hard to compute. We will present a fast approximation algorithm.

Tufts

6 UNIVERSITY



LLPD Visualization
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The oreen and
red paths both
connect the
specified points,
but the red path
has smaller
maximal edge

length.
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Euclidean Distance versus LLPD

Euclidean distance from (0.0540, 0.8429)
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Low Dimensional, Large Noise (LDLN) Model

Definition. A set S C RY is an element of Sq(k, €g) for some x> 1 if it has finite d-dimensional Hausdorff
measure, denoted by H?, is connected, and for some ey > 0, it satisfies the following geometric condition:

_ HE(S N Be(x))
1.d o ¢ < el
Vre S, Vee (0,e), K €< (B, (0) < Ke

L.ow-dimensional

Xi,...,Xg CX CR"V

n; i.i.d. draws from Unif(X;) 0800 o
Xl, ooy XK - Sd(l{, 60) » T 0%
0.8 @08(%5% :;:‘?é,% :
0 = min dist(Xy, Xp) ol 83
kK’ 80 QB
04 .\.:‘-
o
P
. : 0 &
Large noise h 0

~ n ii.d. draws from Unif()N()1 ‘ el
X=X\(X1U...UXk) .,

n=n1+...+ng+n

o = Bl Tufts
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Nearest Neighbors in LLPD and Denoising

* In the LDLN model, points within clusters all have comparable
distances, and points from different clusters are well separated.

* We denoise points by removing all points whose distance to
their k, /" nearest neichbor exceeds some threshold 6 .

* knse, 0 are parameters.

* This analysis, based on percolation theory, proves the weight
matrix 1s nearly block constant.

Tufts
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Performance Guarantees

Theorem. (Little, Maggioni, M.) Under the LDLN data model and assumptions, suppose that the cardinality

n of the noise set is such that
k’I’LSED

k 1 D k
7 < % nset A1 (Freer)
— Cl min .

Let f,(x) = e~ 17" be the Gaussian kernel and assume knse = O(1) and that 222 = O(1). Let nyqn be
sufficiently large enough and let 0,0 satisfy

1 kEnse+1)\ 1
Cyny, BT <0< Con~ (HET) D (1)
Cs0 < o < O46 (2)

Let L be the LLPD Laplacian defined on the denoised data Xy, that is, L = I — D_%WD_%, where
Wi = fo(pee(xi,x;)). Then with high probability:

(i) the largest gap in the eigenvalues of L is Ax11 — Ak -
(11) spectral clustering with L with K principal eigenvectors achieves perfect accuracy on Xy .

The constants {C;}?_, depend on the geometric quantities but do not depend on ni,...,ng,n,0,0.

Tufts
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Numerical Implementation

* Recall computation appears hard, since space of paths 1s large.

* We propose an etficient approximation scheme, quasilinear in n .

* Computing the first K eigenvectors ot the LLILPD Laplacian is

O(n(k1Cnn +m

(k1 Vlog(n) vV K#)))

* k1 is the number of neighbors in original graph.
* M is related to accuracy of approximation.

e (np is the cost of a]

“uclidean nearest neighbor query.

ﬁ

O(C*Dnlog(n))

Big data regime ( n = 10° takes a few minutes! )

Tufts
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Columbia Object Image Library (COIL)

COIL 16 Classes Multiscale Eigenvalues for LLPD SC

T

* 16 classes, ambient dimensionality 1024, about 100 samples
per class.

* LLLPD spectral clustering achieve 99+% accuracy, and T
ufts

correctly identifies that there are 16 classes. me e ©i



Incorporating Nonlinear Geometry

Learn nonlinear geometry with a

diffusion process P _ Wi,
> Wie
(=1
lwg—xjli3
Wij _Je o , XI; € NNk(a?]),
0, else.

Diffusion Distances:

n

E _
di(xiy ;) = > (Pl — Pl)?te

- Tufts
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Spectral Formulation
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Learning by Unsupervised Nonlinear Diffusion

1.) Compute empirical density:

2.) Find points that are d; -far
from higher density points:

3.) Estimate modes as
maximizers of:

(LUND)
p0($i) _ Z e—llfﬂia—;j 15

T j EN N (xz)

p(zi) = po(z:)/ Zpo(%')

( .
min di(x;,x;), x; #argmaxp(x;),
Be(xi) = 4 {p(z;)>p(z:)} 3 2 i (i)
max d¢ (x4, ), r; = arg max p(x;).
L T i

pe(zi) =pe(x;)/ max p(T;)

J

Di(x:) = p(x:i)pe ()
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Learning by Unsupervised Nonlinear Diffusion
(LUND)

Assign all points the same label as their d¢-nearest neighbor of
higher density.
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With fast nearest-neighbor look-ups, complexity is O(nlog(n)DC d)
D — ambient dimension

d — intrinsic dimension

n — number of data points T“fts

17 UNIVERSITY



Mathematical Guarantees

K
[et X = U X1 be the latent clusters in the data.
k=1
D;, = max max di(x Dptw = min min  dq(x,vy).
- k x,yeXp ( 7y)7 v k#£k! x€ Xy, ye X/ ( ’y)

Theorem. (Maggioni, M.) Let X = Ule Xi and let P be a corresponding
Markov transition matriz on X, inducing diffusion distances {Dy}y>0. Then

there exist constants {C;}2_, > 0 such that the following holds: for any € > 0,
and for any t satisfying C1 In (%) < t < U3¢, we have

D;fm S 046, thw Z C5 — 046.

The constants {C;}°_, depend on the data. More separation

between clusters and cohesion within cluster lead to better
constants.

) Tufts
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Multiscale Equilibria 11
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Diffusion distances from red point in log scale: as time
increases, mesoscopic equilibria, then global

equilibrium is reached. T“fts
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Mathematical Guarantees

M = {p(z) | 3k such that x = argmax, x, p(y)}

Theorem. (Maggioni, M.) Suppose X = U,‘f:l X as above. The proposed
algorithm labels all points accurately, and correctly estimates K, provided that

Dip _ min(M )
Dbt’w maX(M) .

The more well-separated and internally cohesive the clusters are,
the greater time range in which accuracy is assured.

Proofs base on analysis of Markov matrices in relationship to
near reducibility and mixing times.

Tufts
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HSI Clustering

Salinas A HSI: D =220, n =7138

Six classes, substantial within-class
variation
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Spatial Regularization

LLUND LUND+Spatial Regularization
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Active Learnin

; Performance of Active Learning Algorithms
T T T T T T T
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Fiy(wn) = |die(2n, 27, ) — de(2n, 23,

ni 2

Adding O(1) training labels to perfect accuracy!
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Summary and Broad Future Directions

* 'The low-dimensional, high noise model allows to prove performance guarantees for
clustering algorithmes.

* Efficient algorithms for data-dependent metrics allow to handle large numbers of
data points in high dimensions.

* Applicable to real-world data, including image datasets, remotely sensing signals,...
* Future:

* Mathematics: Investigate problems in discrete-to-continuum limits,
multiscale hierarchies, metrics for graph construction, directed graphs...

* Machine Learning: Theoretical models for active learning, alternative
diffusion constructions

* Data Science and Interdisciplinary Collaboration: Develop algorithms
and software for application to real data: remote sensing, medical signals,

social media networks...
Tufts
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Code and Contact Information

Code: https://jmurphy.math.tufts.edu/Code/

Contact: jm.murphy(@tufts.edu

Thanks for Your Attention!

2/


mailto:jm.murphy@tufts.edu

