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What is Superresolution?

Superresolution is the process of increasing the resolution of a signal,
without introducing artifacts and while preserving important signal details.

It can be understood as a stand alone problem, or as a recovery problem.

It can be approached both mathematically and algorithmically, with
different goals.

This talk discusses the latter approach, while taking motivation from
theoretical signal processing results.
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Superresolution in action

Algorithmic superresolution is found in scientific applications and
technology present in everyday life.

Any type of image resizing feature, such as zoom, will employ a
superresolution algorithm once the true resolution is exceeded.

Bringing images to higher resolution is significant in fields where image
data may contain crucial detail features, such as medical imaging and
remote sensing.

Comparing images of different resolutions, perhaps captured by different
sensors, also requires superresolution.
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Mathematical Formulation

We can consider the problem of image superresolution as an inverse
problem: we aim to recover a signal f ∈ Rd given measurements

y = L(f ) +N ,

where L is an operator and N denotes some kind of noise. For example,
L may be a downsampling operator and N Gaussian noise.

One can develop interpolators that recover f from y .

These can be linear or non-linear; non-linear interpolators that
incorporate directionality typically perform well. How to incorporate this
directionality best is not completely understood.

This method is performance-driven: few theoretical guarantees exist for
superresolution cast in this light.
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Mathematical Formulation

One way to get a foothold mathematically is to restrict the class of signals
under analysis.
For example, Candès and Fernandez-Granda studied the case where
signals are one-dimensional and of the form

f =
∑

j

ajδtj , {tj}j ⊂ [0,1],

and the measurements are low-frequency Fourier coefficients:

y(k) =
∑

j

aje−2πiktj , |k | ≤ K .

Benedetto and Li have recently studied the generalization to measures
other than sums of Diracs.
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Mathematical Formulation

In this restricted model, a condition relating the separation of the {tj}j and
K can be developed to prove that f can be recovered exactly via the
convex optimization problem

f = argmin
F2K+1g=y

‖g‖TV .

This is great, but this is a continuous model, whereas practical image
processing is done for discrete images. Moreover, the model class of
sums of Dirac measures (C,F-G), or singular measures (B+L), is
potentially limiting.
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Engineering Sparsity

Sparsity plays a role in algorithmic superresolution.

At a high level, a signal is represented in a basis in which it is sparse.
Intelligent interpolation can then be done based on this sparse
representation.

One approach to incorporating the power of sparsity into the
superresolution problem is via sparse mixing estimators (SME). This
technique was developed by Mallat and Yu (2010), leading to a
state-of-the-art superresolution algorithm.
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Overview of SME superresolution

In essence, the SME superresolution algorithm proceeds by
decomposing a measurement y according to a (potentially) redundant
frame in which it has a sparsely representation.

For a set of angles {θ}, directional interpolatiors Uθ are applied to blocks
of frame coefficients that have a low degree of directional regularity in the
direction θ.

Sparsity is key for the application of these directional interpolators, since
a signal is more likely to have low directional regularity on blocks if it is
sparsely represented.
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Overview of SME Superresolution

The local directional information contained in the image is captured by
studying block sparsity in an appropriate chosen basis, via directional
regularity.

This information is then exploited through directional interpolation, in
order to increase the resolution of the image in a way that respects the
geometry of the image.

In order for any of this to work, a frame in which the images under
consideration may be sparsely represented must be chosen. This is
where harmonic analysis plays a significant role.
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Harmonic Analysis for Superresolution

Wavelets have been used for superresolution since at least the early
2000s.

The separation of high and low frequency information that wavelets offer
is crucial in efficiently recovering the high frequency information that is
often lost when downsampling, or that must be generated when zooming
in on an image.

Wavelets have a variety of fast implementations, including filterbank
methods, which make them a particularly useful tool for large images or
batch problems.
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Discrete Wavelet Decompositions

We consider discrete wavelet frames in the continuous setting.
Let f ∈ L2(R2), and let ψ be a wavelet function. Then f may be
decomposed in the following manner, with convergence in the L2(R2)
norm:

f =
∑
m∈Z

∑
n∈Z2

〈f , ψm,n〉ψm,n,

where ψm,n(x) := |det A|m2 ψ(Amx − n), A ∈ GL2(R). A typical choice for A
is the dyadic isotropic matrix

A =

(
2 0
0 2

)
.
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Wavelet Theory

Wavelets decompose a signal with respect to scale and translation.

This allows an efficient separation of high and low frequency information,
which often provides a highly compressible representation of an image.

Of course, the above formulation does not make sense for discrete, real
signals. Many numerical implementations of wavelets and similar
decompositions exist, including the discrete wavelet transform and
steerable filterbanks. These often have different computational
complexity and geometric invariance properties, but are spiritually similar.
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Applications of Wavelets

Wavelets revolutionized the fields of image compression, fusion, and
registration.

They have been implemented in a variety of ways for image
superresolution.

Wavelet methods can be implemented with fast, efficient numerical
algorithms in your favorite language.
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Drawbacks of Wavelets

Wavelets are good for one dimensional jump discontinuities, but are poor
in dimensions 2 or more.

This is a major weakness, since one of the most widely-lauded
applications of wavelet methods is image analysis, which is
two-dimensional at its simplest.

Basically, discontinuities destroy the sparsity of wavelets for general
images; on must restrict to a class of smooth, slowly varying images to
get excellent sparsity properties for a wavelet basis.
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Drawbacks of Wavelets

In higher dimensions, singularities have a directional character, but
wavelets are fundamentally isotropic. This limits wavelets’ effectiveness
for resolving key aspects of images, such as edges. (Dahlke, De Mari,
Grohs, Labate, 2015)

What is needed are decomposition systems that are anisotropic, taking
directionality into account.

This weakness of wavelets partially motivated the development of
geometric multiresolution methods, such as curvelets, ridgelets, and
shearlets.
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Shearlets

Let f ∈ L2(R2) and ψ be a shearlet function. Then f may be decomposed
in the following manner, with convergence in the L2(R2) norm:

f =
∑
j∈Z

∑
k∈Z

∑
m∈Z2

〈f , ψj,k,m〉ψj,k,m.

Here,
ψj,k,m(x) := 2

3j
4 ψ(Sk A2j x − m).

Aa =

(
a 0
0 a

1
2

)
, Sk =

(
1 k
0 1

)
.

Note that A has been replaced with Aa, which is no longer isotropic; this
will allow our new analyzing functions to be more pronounced in a
particular direction.

The new matrix Sk , a shearing matrix, lets us select the direction.

As a becomes larger, the direction selected by Sk will be emphasized to a
proportionally greater degree.
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Shearlets

Shearlets have several numerical implementations; the most popular are
the fast finite shearlet transform (FFST) and Shearlab.

These run with roughly the same computational complexity as the fast
Fourier transform.

We prefer the FFST, for its ease of use. It is less flexible than Shearlab,
however.
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Applications of Shearlets

Shearlets have been applied to many of the same problems in image
processing as wavelets.

They have seen particular success in denoising, edge extraction, and
image registration.

Mathematically, their anisotropic structure has led to their use in the
geometric classification of singularities.
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Shearlet Optimality

One of the theoretical benefits of shearlets is their optimality for
representing a certain class of functions.

Definition

The set of cartoon-like images in R2 is

E := {f | f = f0 + χBf1, fi ∈ C2([0,1]2), ‖fi‖C2 ≤ 1, B ⊂ [0,1]2, ∂B ∈ C2([0,1])}.

The space of cartoon-like images is an attempt at a quantitative definition
of signals that represent images. That is, although images are discrete, if
we are to consider only continuous signals, then E purports to model the
class of signals corresponding to images.
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Shearlet Optimality

Shearlets are known to be theoretically near-optimal for E over all
reasonable representation systems.

That is, elements of E may be written with near-optimally few shearlet
coefficients, when compared to the number of coefficients required by
other representation systems.

From a practical standpoint, this suggest shearlets should be superior to
wavelet methods in sparsity-driven problems, when cartoon-like images
are the objects of analysis.

This is of course a rather serious caveat, since real data do not typically
fall into such tightly restricted settings.
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Other sparsity models

Shearlets are well-adapted for the cartoon-like regime.

The wave atoms of Demanet and Ying are well-adapted for textures, as
modelled by images with a high degree of oscillation.

Recently, Donoho and Kutyniok have studied joint frames of wavelets and
shearlets, building on Donoho’s earlier work on morphological component
analysis. This method aspires to capture textures with wavelets and
edges with shearlets.

This more complicated regime is interesting, but not analyzed in the
present work.
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Algorithm Overview

1 Decompose image I to be superresolved into a frame.

2 Perform directional interpolation on blocks of frame coefficients,
depending on the directional regularity of the block. This increases the
resolution of the image.

3 Apply inverse transform to modified frame coefficients, to acquire a
superresolved image I.
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Overview of SME

The key insight in Mallat and Yu’s basic method is how the directional
interpolation is performed.
It is performed on blocks of frame coefficients.
For an angle θ and frame coefficients c, a measure of directional
regularity in the direction θ is computed on a block of coefficients B:

RBc = c|B − c̄|B.

Here, c̄(k , j) = average of the k th frame coefficients in B located on the
line passing through j , at angle θ, where k runs through all frame
coefficients.
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SME Overview

Whether to interpolate the coefficients along the block B in the direction θ
depends on whether ‖RBc‖2 is small or large.

‖RBc‖2 is the energy of the variation in coefficients, with respect to their
average in the direction θ.

If ‖RBc‖2 is small, there is little difference between the average frame
coefficients in the directional θ and each individual frame coefficient, so
there is a strong degree of anisotropy in the direction θ.
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SME Overview

Key parameters to be set are what collection of angle {θ} to consider for
directional interpolation, and what blocks of frame coefficients to use.

We consider 20 equally space angles, i.e. {θ} = { kπ
10 }

20
k=1. More angles

could be included, especially for larger images, to cover significant
directional phenomena that are missed by the current set-up.

We use the block structure proposed by Mallat and Yu: 28 anisotropic
rectangles of various lengths and area between 12 and 18.
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Block examples

Figure: An image to be superresolved (left), covered with oriented blocks (right), as
determined by directional regularity.
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Role of Shearlets

The original scheme proposed a wavelet frame be used to decompose
the image I.

We propose using a shearlet frame, as implemented by the fast finite
shearlet transform (FFST).

We hypothesized the improved anisotropy of the shearlet frame would be
well-suited to correctly determining directional regularity.
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Quantitative Evaluation

In order to do a quantitative analysis of our method, we perform the
following procedure on a test image I:

1 Downsample I by a factor of 2 to acquire Id .
2 Superresolve Id by a factor of 2 with a particular superresolution algorithm to

acquire Ĩ.
3 Compute the PSNR between I and Ĩ.

In our case, PSNR(I, Ĩ) = − log10(‖I − Ĩ)‖2), so a high PSNR means a
low `2 error.
In this sense, we consider superresolution as a recovery problem.
Otherwise, it is difficult to quantify performance.
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Shearlet SME Algorithm Overview

1 Decompose an image I (already downsampled) into a shearlet frame.

2 Compute block decomposition, based on directional regularity.

3 Directionally interpolate in blocks.

4 Apply inverse frame operator to recover a superresolved image Ĩ.
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Previous Shearlet Methods

We had previously considered a method in which directional interpolation
was performed based not on block directional regularity, but simply based
on which direction had maximum gradient or maximal shearlet coefficient.

This information was then applied by blurring a naively upsampled image
in the preferred direction.

Some naive upsampling methods included isotropic interpolation, such
as nearest neighbor, bilinear, or bicubic interpolation.

This method, with naive bicubic upsampling, is included in our
experimental analysis.
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Synthetic Numerical Experiments

We first consider images of simple geometric objects that fall clearly in
the cartoon-like regime.

While not a realistic test of the usefulness of a superresolution algorithm,
this should give us some sense of whether the fundamental idea, of using
shearlets for their optimality for cartoon-like images, is valid.

We consider three simple synthetic images: an oriented half-plane, a
circle, and a parabola.
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Figure: Synthetic images for superresolution algorithm evaluation, from left to right:
half plane, circle, parabola. All image are of size 256 × 256.

February 9, 2016 33 / 39



Numerical Results for Synthetic Experiments

Image PSNR linear PSNR Shearlet Blur PSNR SME wavelet PSNR SME shearlet
plane 29.3764 26.9540 31.5270 32.7285
circle 75.9040 74.4775 77.0883 77.4269

parabola 26.4058 24.9647 28.2656 28.9765

Table: The PSNR values for synthetic experiments.
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Outside the cartoon-like regime

We now consider real test images, from remote sensing and standard
image processing datasets.

These fall outside of any simple model, and are hard to predict in terms of
performance.

In many cases, the improvement is small, even negligible, when
compared to the improvements on synthetic data.
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Real Data

Figure: Real images for superresolution evaluation, from left to right and top to bottom:
lidar, synthetic aperture radar, hyperspectral, peppers. All remotely sensed images are
of size 256 × 256, while peppers is of size 512 × 512.
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Real Experimental Results

Image PSNR linear PSNR Shearlet Blur PSNR SME wavelet PSNR SME shearlet
lidar 30.0101 28.6488 30.7447 30.8486
SAR 13.6952 13.5114 14.1380 14.2112
KSC 33.1207 31.5616 33.4593 33.5295

peppers 31.2676 27.4390 31.9322 31.9625

Table: The PSNR values for experiments with real images.
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Conclusions

In general, decomposing in a shearlet frame offers improved performance
for the SME method, when compared to a wavelet frame.

The change is more profound for simple images, perhaps because they
fall into the cartoon-like regime, where shearlets are known to perform
optimally.

For real images, which are a mix of sharp edges, textures, and oscillating
features, the results are less remarkable.
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Future Work

The work of Demanet and Ying on optimality for textures suggests the
use of wave atoms for representing textures and oscillating features. This
could be incorporated into a superresolution algorithm specifically aimed
at textural images.

The recent work of Donoho and Kutyniok on joint frames of wavelets and
shearlets suggests a morphological superresolution regime might provide
superior results, compared to wavelets or shearlets alone.

Indeed, by including both types of frame elements via MCA, edges and
textures can be jointly represented in an efficient way. An appropriate
interpolation can then be applied separately.
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