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Unsupervised Learning

Data to Cluster

Unsupervised learning: infer
structure from data without
access to training data, 1.€.
examples belonging to particular
classes.

Clustering: unsupervised
learning in which the goal is to
label points as belonging to a
otven class.

K 3 K
QEl,...,Q?nN/L:ZUJkMk—|—/L, Zwkzl
k=1 k=1

Labeling: Which £ were generated from Hk?
Number of Clusters: Can we estimate J ? Tufts

UNIVERSITY



Standard Method: K-Means

e Idea: find K centroids, then

assign each point to its nearest 0
centroid.

Data to Cluster

* Empirically good for same sized,
spherical clusters. 05t

e Guaranteed for certain Gaussians. o

e Exact solution 1s NP-Hard to 05
Compute.

* Standard implementations involve
non-convex optimization.

e Need to know K .

K
C* = argmin Z Z |z — Z1|3

C={Ckl}y_, k=1 reCl TL'IftS
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Standard Method: K-Means

¢ Idea: find K centroids, then
assign each point to its nearest

centroid.

* Empirically good for same sized,
spherical clusters.

e Guaranteed for certain (Gaussians.

e Fxact solution 1s NP-Hard to
Compute.

* Standard implementations involve
non-convex optimization.

e Need to know K .

K
C*" = argmin Z Z |x — 2]

C:{Ck}le k=1 xe(Cy

Data Labeled with K-means
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K-Means

Data to Cluster
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K-means Labels
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Spectral Clustering I

Data to Cluster

Idea: embed data into a lower-
dimensional space in a structure =l 8555 8k
. o5t 9 O%;f g"% %"ﬁgg ?8
preserving way. I I SH oo
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‘/ ‘/ i1 —_— € d(x?’ 7x~7 ) /O- Weight matrix, d(x,y) = ||z — y||2, 0 = 0.071

for some metric (] (-7 ) and o . .
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Step 2: Compute the (graph) Laplacian
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Spectral Clustering 11

Step 3: Compute eigenvalues of L

Low-dimensional Embedding from L

0< A < A< <Ay o

. . 0.08 |-

and associated eigenvectors
0.06
Oy,...,P,. 004
0.02 -
Step 4: Embed the data as & o
-0.02
X; ((1)1($z)7 . ,(I)K(.CEZ)) oorl
then run K-means. Note oos|
-0.08 -

Dj(xi) := (7).
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K-Means v. Spectral Clustering

K-means Labels Spectral Clustering Labels
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* Spectral clustering (with a “good” o ) succeeds where K-means fails!

* Theoretical estimates are limited, particularly for estimating the
number of clusters. Common heuristic: K ~ argmax A1 — Ak -

k
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Data-Dependent LLPD Metric

Definition. For a discrete set X = {x;}" , C RY, let G be the graph on X with edges given by the Euclidean
distance between points. For x;,xs € X, let P(x;,xs) denote the space of paths connecting x;,xs in G. The
longest leg path distance (LLPD) between x;,Ts is:

dpo(x;, Ts) = min max 11— Y
M( v S) {yj}leep(xi,xs)jzlﬂ ..... L—1Hyj_|_1 yJHQ?

* The distance between points Z,¥ is the minimum over all paths between %, ¥ of the
longest edge in the path.
* Depending on the data X, this distance changes!

* § could be a complete graph (all points connected to all points) or a connected

NN graph.

* [.ooks hard to compute. We have a fast approximation, so this turns out not to be
an obstacle.

Tufts
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Euclidean Distance versus LLPD

Euclidean distance from (0.0540, 0.8429)
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Data Well-Suited for LLPD

Data to Cluster
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LLPD Weight Matrix

* For our simple “four lines” data, there is a big difference between Euclidean distance
(data independent) and LLLPD (data dependent).
* The LLLPD weight matrix has block-constant structure.

Weight matrix, d(z,y) = || — yl|2, o = 0.1474 Weight matrix, d(x,y) = dy(z,y), o = 0.06
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Low Dimensional, Large Noise (LDLN) Model

Definition. A set S C RY is an element of Sq(k, €g) for some x> 1 if it has finite d-dimensional Hausdorff
measure, denoted by H?, is connected, and for some ey > 0, it satisfies the following geometric condition:

~1.d H(S N Be(x)) < ppd

KRE .

5
Ve eSS, Vee(0,¢), kK < <
¢ € (0, <0) < B 0)

L.ow-dimensional

Xla***axKCXCRD N |
n; i.i.d. draws from Unif(X;)
Xl,...,XKESd(/{7€O) .
kK’ (X Xi)

0.2

Large noise

~

~ n i.i.d. draws from Unif(X)
X=X\(XU...UXkg)

n=n1+...+ng+n
Nmin — mMIN Ny

1sk<K Tufts
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Nearest Neighbors in LLPD and Denoising

* In the LDLN model, points within clusters all have comparable
distances, and points from different clusters are well separated.

* We denoise points by removing all points whose distance to
their k... nearest neighbor exceeds some threshold 6 .

* knse, 0 are parameters.

* This analysis, based on percolation theory, proves the weight
matrix is nearly block constant.

Tufts
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Performance Guarantees

Theorem. (Little, Maggioni, M.) Under the LDLN data model and assumptions, suppose that the cardinality

n of the noise set is such that
anGD

k +1 D k
7 < (@) e nd‘f‘l(kn:es‘il).

Cl mn

Let f,(x) = e /7" be the Gaussian kernel and assume knse = O(1) and W = O(1). If nyin is large
enough and 0,0 satisfy

Cin T < 0 < Cyin~ (BB (1)
C30 < 0 < Cyf (2)

then with high probability the graph Laplacian L on the denoised LDLN data XN satisfies:
(i) the largest gap in the eigenvalues of L is A1 — Ak
(ii) spectral clustering with L with K principal eigenvectors achieves perfect accuracy on Xy .

The constants {C’i}‘}:1 depend on geometric quantities but do not depend on nq,...,ng,n,0,0.

; Tufts
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Columbia Object Image Library (COIL)

COIL 16 Classes Multiscale Eigenvalues for LLPD SC

T

* 16 classes, ambient dimensionality 1024, about 100 samples
per class.

* LLLPD spectral clustering achieve 99+% accuracy, and
correctly identifies that there are 16 classes. TUftS



Incorporating Geometry?

For p € [1,00) and for z,y € X, the (discrete) p-weighted shortest path
distance (PWSPD) from x to y is:

m={x; o1

L1 ;
lp(z,y) = min (Z Hfl?v;—ivi+1p> :
1=1

where 7 is a path consisting of data points in X with 1 = x and = = y.

Raw Data, 2 Classes Raw Data, 3 Classes Raw Data, 4 Classes

s

é%%&%

o L

:

§

b

Y
Ls o
.5

Sy
Ls o

5

How to balance density and geometry when both are salient? Tufts
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SC with PWSPD, p=1.2

0.6 -
%gw o
04 ...“ XX gg>< *
e® 00 X x
Oy
0.2t "& é&%‘
$
%M 0 '.o ¢ &:K « X
s ..’uf‘ % X
«® ‘.“ kT
0.2} f?ﬁ? %X*%; %
° X
[ O‘Q~ %%
0.4+ )
\ ;88@& XXX
-0.6 | | &Kxg | | |
0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

b3

-0.2 -

_04 L

-0.6

0.6

0.4

0.2

Role of P

SC with PWSPD, p = 2

® As pchanges, the embedding changes!
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SC with PWSPD, p = 5

P2

® (Can we build a cluster model that balances geometry and density?

® Need to understand continuum versions of PWSPD and
associated Riemannian metrics.

Tufts
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Hyperspectral Images (HSI)

High dimensional images:

M x N x D

Spatial Spectral

The spectral bands are localized
at certain electromagnetic
frequencies, allowing for precise
differentiation of materials in
scenes

Learning Problems: clustering,
anomaly detection, active
learning, classification,
segmentation, compression. ..

Applications: land cover
change, water quality evaluation,
precision agriculture, pollution
tracking, defense and security...

Subset of Pavia dataset, sum of all bands (sum across D )

Ll

Ground Truth

Tufts
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Recorded Reflectance

Each Pixel 1s a High-Dimensional Vector

Randomly Selected Pixel Spectra, Colored by Class

0.025

0.02 -

0.015

0.01

0.005

* Large within-
class variation.

* Significant
between-class
overlap in some
dimensions.

Spectral Band Number

Tufts
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Individual Spectral Bands

Band 2
50 100 150 200 250 300
Band 20
50 100 150 200 250 300
Band 40
50 100 150 200 250 - 300
Band 102

50 100 150 200 250 300 T ft
uits



Incorporating Nonlinear Geometry

Learn nonlinear geometry with a

diffusion process P _ Wi,
> Wie
(=1
lwg—xjli3
Wij _Je o , XI; € NNk(a?]),
0, else.

Diffusion Distances:

n

Ty

di(wi,j) = \ Z(Pite - P]tE)Z_

22

1400

Tufts
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Spectral Formulation

n

dy Liy X )\?t Dy(2) — Py(y :

(=1

{X¢, ®p}y_, Spectral decomposition of P
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Exploiting Nonlinear Structure: Diffusion Maps

%1073

10 -

-0.01

Diffusion Embedding of Data with GroundTruth

24
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Learning by Unsupervised Nonlinear Diffusion

1.) Compute empirical density:

2.) Find points that are d; -far
from higher density points:

3.) Estimate modes as
maximizers of:

(LUND)
p0($i) = Z e—llacio_zmj 12

T j eEN Ny (a:z)

p(zi) = po(z:)/ Zpo(%')

( .
min di(x;,x;), x; #argmaxp(x;),
Be(xi) = 4 {p(z;)>p(z:)} 3 2 i (i)
max d¢ (x4, ), r; = arg max p(x;).
L T i

pe(x;) =pe(xs)/ max pi(xj)

J

Di(x:) = p(x:i)pe ()

Tufts
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Learning by Unsupervised Nonlinear Diffusion

(LUND)

Assign points the label of d¢-nearest neighbor of higher density.

LUND Labels Ground Truth

000000

000000

With fast nearest-neighbor look-ups, complexity is O (n log(n)DC d)

D — ambient dimension

d — Intrinsic d

n — number of data points

1mension

Tufts
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Mathematical Guarantees
K

Tet X = U X1 be the latent clusters in the data.
k=1

D™ = max max d¢(x,y), D =min min  di(z,y)
k x,yeXp k#£k! x€ Xy, yc X,/

Theorem. (Maggioni, M.) Let X = Ule X and let P be a corresponding Markov transition
matriz on X, inducing diffusion distances {d;}¢>o. Then there exist constants {C;}2_; > 0

such that the following holds: for any € > 0, and for any t satisfying C; In (%) <t < Cse,
we have

Dz,n S 046, thw 2 O5 — 046.

The constants {C;}°_, depend on the data. More separation

between clusters and cohesion within cluster lead to better
constants.

; Tufts
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Multiscale Equilibria I
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Diffusion distances from red point in log scale:
small times lead to local mixing.
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Multiscale Equilibria 11

1 A 1
-0.5 0 0.5 1 -0.5 0

t = 108 t = 1016

Diffusion distances from red point in log scale: as time
increases, mesoscopic equilibria, then global

equilibrium is reached. Tufts
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Mathematical Guarantees
M = {p(z) | 3k such that x = argmax, x, p(y)}

Theorem (Maggioni, M.) Let X = Ué{zl X be data to cluster. If K is known
a priori, then LUND achieves perfect accuracy if

D _ min(M )
DMtw " max(M)

® The more well-separated and internally cohesive the clusters
are, the greater time range in which accuracy is assured.

® Similar result available when K is unknown a priori.

® Proofs based on analysis of Markov matrices in relationship to
near reducibility and mixing times.

Tufts



The value of spatial information for HSI

Spectral information
only...some problems
near class boundaries.

0.015

3 -0.02 -0.015 ' d

Spectral-only labels

UNIVERSITY



Two Stage Labeling

_ ' Stage 1: Only label
‘ <—— points that can
confidently be labeled

with spectral

information.

™

Stage 2: Then, use
spatial information to
help fill in the
remaining, spectrally
ambiguous points.

0.015 -

0.01

0.005

-0.005

-0.01 .
0.02

0.01 0.015

0 0.005
0
ufts
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Empirical Clustering Results

Spectral-Only Overall Accuracy:
.8494

‘ Spatial-Spectral Overall Accuracy:

Ll

Afthe Y
Compares very well to state-of-the-art....and fast! Tufts

UNIVERSITY
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Generalization to Active Learning

Active learning: Given O(1) labels, which points to query?

'Two major paradigms for active learning:

1. Margin-based: set the boundaries between classes as quickly
as possible.

2. Cluster-based: use latent cluster structure to sample
ambiguous regions in the data.

LUND lends itself to the second paradigm, where cluster
modes are querted for labels. We call this [earning by Active

Nonlinear Déﬁ%ﬂbﬁ (LLAND,).

y Tufts



Learning by Active Nonlinear Diffusion (LAND)

Theorem (Maggioni, M.) Let X = Ule X be data to classify. Suppose that
D" < D™ and that the B maximizers of Dy include the elements of M. Then
LAND with a budget of size B achieves perfect classification accuracy.

LAND Accuracy

On Salinas A, LAND achieves
improvements in accuracy
_ rapidly, compared to Euclidean-
: i | based active learning methods
T 05 gt LT , .
£, AU | and random sampling.
Y I‘:‘T..:',' ““““
0.2 ,‘i
."'“’
o1ty -
FI i i R

Number Queries

Tufts
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M-LUND: Multiscale Cluster Models

log,,[D;(z)], With Colored Modes

t small

-10

-12

14

log,,[D;(z)], With Colored Modes

loglo[Pt]

t medium

-7

log,o[D:(z)], With Colored Modes

-3.6

-3.8

t large Tufts
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Analyzing Data with Multiscale Structure

What if there 1s more than one time scale that makes sense for the
data’

Transition Matrix

Diffusion State Distances:

10.2
@)

t=0

|

1

p = 2, w = — natural choices.
o

- 0.15

) S

s P v
Z P, — Pfe w(f))
t=0

0.05

)

=1

50 100 150 200 250 300

Node Index

Accounts for multiscale structure in the data. Tufts
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Node Index

Hierarchical SBM and DSD

Transition Matrix

50

100 [

150

200

250

300
50 100 150 200 250 300

Node Index

0.25

10.2

0.15

0.05

Cluster Index

N
T

Average Distances Between Clusters, DSD

1 2 3

Cluster Index

DSD captures the hierarchical structure in the connectivity structure

of the HSBM.

38
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Efficient, Low-Dimensional Embedding

Theorem (Cowen, Devkota, Hu, M., Wu) The diffusion state distance with
weight w = 1/7 and p = 2 admits the decomposition

n

DY/r(ziszi) =11 ) _(ei — €)P'lleza/m) = \ > (1= )72 (e(d) — e(4))>,

t=0 (=1

where {(Ag,¥¢) }7_, are the eigenvalues and right eigenvectors of P.

Low-dimensional embedding:

55 V2(), - T Um(8))

ZIZ@'—>(1

Fast solvers (e.g. AMG) allow this to scale on big networks. Tufts



Protein-Protein Interaction Networks

Protein-protein interaction (PPI) networks: vertices represent
proteins, edge connections between them.

Two proteins are connected by an edge for reasons of, e.g.
experimental evidence that they bind in the cell; expressed in the

same human tissues;

The benchmark DR

similar function.

HAM networks are fairly large and somewhat

sparse (~20000 nodes, average degree 100).

Want to predict protein functions and classes based on a very small

number of labels and

the network properties.

Tufts
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F1 Metric

DSD Predicts Missing Links

0.35 035
—— (DSD) Normalized L2-DSD distance
— (D)
— (D)
0.30 — (bD)t= 0.30
—— (DD)t =16
Lo
j -
)
[0]
=
—
L

2500 5000 7500 10000 12500 15000 17500 20000
Number of Retrieved Elements

2500 5000 7500 10000 12500 15000 17500 20000
Number of Retrieved Elements

F1 Metric
o o

In PPI Networks

0.35

0.30

2500 5000 7500 10000 12500 15000 17500 20000
Number of Retrieved Elements

Using DSD to predict missing links in benchmark PPI yields
state-of-the-art empirical results, and computational speedup
can be achieved with truncated spectral decompositions.

41
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Dictionary Learning for Clustering

Given observations Y € R¥*” find atoms A € R¥>™ and coefficieints X €&
R™*™ guch that

is small for some regularizer K.

1.0

0.5 1

0.0 1

—0.5 A

—1.0 1

—1.5 -

—1.5 - .

What meaning do the coetficients have for clustering?

Tufts
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K-Deep Simplex (KDS)

® The {z;;} are coefficients in the learned dictionary A .

® The functional we minimize stitches the atoms together by
enforcing locality of reconstructions.

® One can immediately use {x;; } as coefficients to cluster (e.g: as
ograph nodes in classical spectral clustering).

. Tufts



Geometric Sparsity?

® One does not need a large number of atoms to represent well
and sparsely in this framework (e.g. m = 500, n = 35000).

® Indeed, the optimization program generates (in highly
idealized cases) Delauney triangulations.

® This suggests a good representations can be achieved with a
number of atoms M depending only on data geometry.

chrccs of Vertices

P
O
A
7
o
0
|
4

() LS N BRCIR (VAN I SN

Degree

8 10
Left: Original MNIST digits. Tufts
Right: Reconstruction colored by learned label. 44 o



Deep Algorithm Unrolling

® Solving this via ADMM i1s possible but terribly slow.
® Unrolling with a structured deep network gives fast approximations
that work extremely well 1n practice.

Repeat T Ti ) —-—-:5;2 antion
o o l ‘ Activation “ - e \f t
O @ —ED—{— A A=A GEDGD--0 ©
A 11 Code Output
Input y > C{AT
" —a1Q ()

10 A

001 °

15 n 5 o0 o5 1o 15 20 5 0 5 o0 & 1 15 5 0 a5 0 & 1 15 2 TllftS
250 Epochs 1000 Epochs

0 Epochs UNIVERSITY



Some Ongoing Work

Intersecting manifolds: curvature-based graph constructions and
flat geodesics.

(A) Ace-Ala-NMe (B) Ace—-Val-NMe
0 0
. . H H ¢
Molecular dynamics compression: N / N -
RN NN N
0 i 0
7 7
~ 90+ 5 ~ 90 5
=~ 0Of =~ 0OF
s’-9o~ 9 i’-90» 0
—— 1 " 1
90 0 90 -90 0 90
¢ () ¢ ()

Wasserstein clustering for data consisting ot probability measures.

Connections between clustering and segregation on geography
networks—a quantitative framework for political science.

Tufts
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