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Hyperspectral imagery (HSI) is a significant data source in remote sensing. The large data size of HSI and
their high dimensionality demand efficient machine learning algorithms to automatically process and glean
insight from the deluge of hyperspectral data now available.
The process of labelling pixels “by hand” is costly and requires a human expert, motivating machine learning
techniques that require little or no labelled training data. Methods of HSI clustering, or unsupervised
segmentation label HSI with no training data. This is considerably more challenging than traditional clas-
sification, and is mathematically ill-posed without statistical or geometric assumptions on the data. Active
learning is a supervised technique where a small, automatically but carefully chosen set of pixels is labelled,
as opposed to the standard supervised learning setting in which the labels are random. Active learning can
lead to high quality classification results with a very small number of labelled training samples.
Major challenges in machine learning for HSI include:

1. The high dimensionality of the data, with some HSI exceeding 200 spectral bands.

2. Spectral clusters in HSI are typically nonlinear, rendering linear methods ineffective.

3. There is often significant noise and between-cluster overlap among HSI classes, due to the ma-
terials being imaged and poor sensing conditions.

4. HSI images may be very large in size, requiring methods to scale quasilinearly in the number of pixels.

We propose to overcome these challenges by combining density-based methods with geometric learn-
ing through diffusion geometry [1; 2] in order to identify class modes. This information is then propagated
to all data points through a nonlinear process that incorporates both spectral and spatial information. The
use of data-dependent diffusion maps for mode detection offers significant empirical advantages and enjoys
robust theoretical performance guarantees [3]. Diffusion distances exploit low-dimensional structures in the
data, allowing the proposed method to handle data that is high-dimensional but intrinsically low-dimensional,
even when nonlinear and noisy. Moreover, we propose a spectral-spatial labelling scheme which takes ad-
vantage of the geometric properties of the data to improve the empirical performance of clustering when
compared to labelling based on spectral information alone [4; 5]. In addition, the proposed unsupervised
method assigns to each data point a measure of confidence for the unsupervised label assignment. This leads
naturally to an active learning algorithm in which points with low confidence scores are queried for training
labels, which then propagate through the remaining data.

Diffusion Processes on Graphs
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Figure 1: Data drawn from two distributions: µ1 is a mixture of two isotropic Gaussians with means (0, 1) and (1, 0) connected by a parabolic
shape; µ2 is an isotropic Gaussian with mean (0, 0). Uniform background noise is added. Left : The data plotted and colored by cluster. Middle:
The distances from the point (0, 1)—colored red—in the Euclidean distance. Right : The distances from the point (0, 1) in diffusion distances. The
parabolic segment bridges the two Gaussians and causes the high density regions near (0, 1) and (1, 0) to be closer in diffusion distance than they are
in Euclidean distance, due to the introduction of many paths with short edges connecting the high density regions across this bridge.

Let X = {xn}Nn=1 ⊂ RD be discrete. The computation of the diffusion distance dt [1; 2] constructs a
weighted, undirected graph G with vertices corresponding to the points in X and weighted edges given
by the N × N weight matrix W (x, y) := e−‖x−y‖

2
2/σ

2
, x ∈ NNk(y) and W (x, y) = 0 otherwise, for some

σ, k, where NNk(x) is the set of k-nearest neighbors of y in X with respect to Euclidean distance. Let
P (x, y) = W (x, y)

/
deg(x) be an N × N Markov transition matrix, where deg(x) :=

∑
y∈XW (x, y) is the

degree of x. For an initial distribution µ ∈ RN on X, the vector µP t is the probability over states at time
t ≥ 0. As t increases, this diffusion process on X evolves according to the connections between the points
encoded by P .
The diffusion distance at time t is d2

t (x, y) :=
∑

u∈X(P t(x, u) − P t(y, u))2dµ(u)/π(u), for πP = π the sta-
tionary distribution. P has eigenvectors {Φn}Nn=1 and eigenvalues 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λN |, whence

d2
t (x, y) =

∑N

n=1
λ2t
n (Φn(x)− Φn(y))2 . (1)

Diffusion distances are parametrized by t, which measures how long the diffusion process on G has evolved. If
G is connected, |λn| < 1 for n > 1. Hence, (1) may approximated by truncating at some suitable 2 ≤M � N .
The truncation simultaneously denoises and reduces computation by requiring only a few eigenvectors.

Algorithm Description: Spectral-Spatial Diffusion Learning (DLSS)

The first part of the proposed clustering [4; 5] and active learning algorithms is to learn K modes of the
data, corresponding to unique clusters. This is detailed in Algorithm 1.

Algorithm 1: Geometric Mode Detection Algorithm

Input: X,K
1: Compute the empirical density p(xn) for each xn ∈ X.
2: Compute {ρt(xn)}Nn=1, the diffusion distance from each point to its nearest neighbor in diffusion

distance of higher empirical density, normalized.
3: Set the learned modes {x∗i }Ki=1 to be the K maximizers of Dt(xn) := p(xn)ρt(xn).

Output: {x∗i }Ki=1, {p(xn)}Nn=1, {ρt(xn)}Nn=1.
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Figure 2: Left : Data from Figure 1 represented in the new coordinates given by the second and third eigenfunctions of P . In this coordinate system,
the natural Euclidean distance is equal to the diffusion distance on the original image. The learned modes are computed in this low-dimensional
embedding, as described in Algorithm 1. Middle: Clusters in the new coordinate system. Right : Points are labelled according to diffusion distances
and the learned modes, as described in Algorithm 2.

Once the modes are computed, remaining points are labelled in a joint spectral-spatial iterative proce-
dure, as described in Algorithm 2. A crucial notion is that of consensus spatial label, which is essentially the
most common label among the spatial nearest neighbors [5]. An example of the two-stage labelling procedure
appears in Figure 3. Notice that not all points are labelled in the first stage, only those near the spectral
modes. In the second stage, remaining points are labelled using spatial information.

Algorithm 2: Spectral-Spatial Labelling Algorithm:

Input: {x∗i }Ki=1, {p(xn)}Nn=1, {ρt(xn)}Nn=1

1: Assign each mode a unique label.
2: Iterating in order of decreasing p(x) among unlabelled points, assign each point the label of its

nearest spectral dt-neighbor of higher density, unless the spatial consensus label exists and differs,
in which case the point is left unlabelled.

3: Iterating in order of decreasing p(x) among unlabelled points, assign each point the consensus
spatial label, if it exists, otherwise the same label as its nearest spectral dt-neighbor of higher
density.

Output: Labels {yn}Nn=1.

Figure 3: Left: First principal component of Indian Pines subset. Second from left: Ground truth labels. Third from left: The partial labelling
from the first stage (Algorithm 2, (2)). After mode identification, points are labelled with the same label as their nearest spectral neighbor of higher
density, unless that label differs from the consensus label in the spatial domain, in which case a point is left unlabelled. This leads to points far from
the centers of the classes staying unlabelled after the first stage. Right: Results from second, final stage clustering. In the second stage (Algorithm
2, (3)), unlabelled points are assigned labels by the same rule, unless there is a clear consensus in the spatial domain, in which case the unlabelled
point is given the consensus spatial label.

Algorithm 2 is called spectral-spatial diffusion learning (DLSS), while the variant without spatial
information being incorporated is called diffusion learning (DL).

Experimental Analysis and Conclusions

Numerical results appear in Figure 4; images for the results of DL and DLSS on Salinas A are in Figure 5.

Method OA I.P. AA I.P. κ I.P. OA P. AA P. κ P. OA S.A. AA S.A. κ S.A. OA K.S.C. AA K.S.C. κ K.S.C.
SMCE 0.52 0.45 0.22 0.83 0.77 0.79 0.47 0.42 0.30 0.36 0.26 0.01
HNMF 0.41 0.32 -0.02 0.72 0.74 0.66 0.63 0.66 0.53 0.36 0.25 0.00
FMS 0.57 0.50 0.27 0.77 0.64 0.69 0.70 0.81 0.65 0.74 0.70 0.65

FSFDPC 0.58 0.51 0.26 0.78 0.75 0.73 0.63 0.61 0.54 0.36 0.25 0.00
DL 0.67 0.62 0.44 0.85 0.78 0.81 0.83 0.88 0.79 0.81 0.72 0.74

DLSS 0.85 0.82 0.75 0.94 0.83 0.93 0.85 0.90 0.81 0.83 0.73 0.76

Figure 4: Overall accuracy (OA), average accuracy (AA), and Cohen’s κ for real HSI clustering experiments on subsets of Indian Pines (I.P.), Pavia
(P.), Salinas A (S.A.), and Kennedy Space Center (K.S.C.). Best results are in bold, second best are underlined. Experiments were performed for
the proposed unsupervised methods (DL, DLSS) and compared to a range of benchmark and state-of-the-art clustering algorithms, including sparse
manifold clustering and embedding (SMCE); hierarchical non-negative matrix factorization (HNMF); fast Mumford-Shah segmentation (FMS); and
fast search and find of density peaks clustering (FSFDPC). Results against other methods are reported in the journal article for this research [5].

Figure 5: Clustering results for Salinas A. Left : DL results; Middle: DLSS results; Right: ground truth.

Active learning incorporates L labelled pixels into the proposed method, computed as the points whose
dt-nearest modes are most ambiguous. More precisely, we fix a time t and for each pixel xn, let x∗n1

, x∗n2

be the two modes dt-nearest to xn. We compute the quantity Ft(xn) = |dt(xn, x∗n1
) − dt(xn, x∗n2

)| [6]. See
Algorithm 3 for details. The proposed active method is compared to a one-shot, non-iterative variant of the
method as well as the fully unsupervised DLSS algorithm for the Indian Pines dataset below. For the Indian
Pines dataset, the iterative method outperforms the one-shot method as α increases, with the gap increasing
substantially as α = L/N approaches 10−1. Both outperform purely unsupervised learning.

Algorithm 3: Iterative Active Diffusion Learning

Input: X,K,L.
1: Compute the modes of the data using Algorithm

1 and assign each a unique label.
2: while L > 0 do
3: Compute, for all xn, Ft(xn).
4: Label the minimizer of Ft with ground truth.
5: L = L− 1.
6: end while
7: Proceed as in (2), (3) of Algorithm 2

Output: Labels {yn}Nn=1
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In terms of computational complexity, the DL and DLSS methods scale as O(CdDN logN + k1DN) ≈
O(N log(N)) with Cd a constant that depends exponentially on the intrinsic dimension d of the data. All
code is available on the authors’ website (https://jmurphy.math.tufts.edu/Code/).
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