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Overview

First, we will present a mathematical construction of discrete directional
Gabor frames, introducing sufficient conditions on the window function
and sampling set Λω.

Second, these frames will be evaluated against state-of-the art frames for
a variety of images.

This is joint work with Wojciech Czaja (UMD), Benjamin Manning (UMD),
and Kevin Stubbs (Duke).
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Mathematical Motivation

Given a signal f , one wishes to extract its most important features for
analysis.

If f represents an image, some important analysis tasks include
segmentation, registration, classification, superresolution, denoising, and
compression.

One class of methods that extract useful features from f are methods of
harmonic analysis, in which one represents f in an illuminating way.

Classical examples:
1 Fourier analysis
2 Wavelet analysis
3 Time-frequency (Gabor) analysis
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Frame Theory

The notion of frame encodes the idea of feature extraction and signal
representation in a way amendable to mathematical analysis.

Definition

Let H be a Hilbert space. A discrete set {φi}i∈I ⊂ H is called a (discrete)
frame for H if there exist constants 0 < A ≤ B <∞ such that:

∀f ∈ H, A‖f‖2
H ≤

∑
i∈I

|〈f , φi〉H|2 ≤ B‖f‖2
H.

The optimal choices of A,B are the frame bounds

For the analysis of 2D images, H = L2([0,1]2). We will focus on this case
unless otherwise stated, though our theoretical results hold for L2([0,1]d ).
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Classical Frames

Many important representation systems fit into this definition.

Fourier frames: {eiλx}λ∈Λ. For Λ = (2πm,2πn)|m,n ∈ Z}, this is Fourier
series.

Wavelet frames: {ψ(Ak (x − (n,m)))}k,n,m∈Z, for some wavelet function ψ
and dilation matrix A.

Gabor frames: {g(x − ω)eiλx}ω∈Ω,λ∈Λ. This can be considered a
windowed Fourier frame.
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Frames and Image Processing

Frames offer a principled system for representing data: given a frame
{φi}i∈I , write a signal f as

f =
∑
i∈I

〈f , φi〉φ̃i .

for a set of dual frame elements {φ̃i}.
Different frames are known to provide efficient representations of different
datasets.
If a scientific user knows something about the structure of their data a
priori, then one can use a frame well-suited to that class of data.
As a computational method, once a frame has been chosen, fast
algorithms for implementation are often achievable.
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Simple Frame Compression

Compression is a standard application of frames. Writing

f =
∑
i∈I

〈f , φi〉φ̃i .

for a set of dual frame elements {φ̃i}, we can reconstruct f from its frame
coefficients {〈f , φi}.
Question: Do we need all the coefficients to reconstruct f well?
Answer: No, if f is a signal well-suited to the frame {φi}; this can be
made precise via the notion of sparsity in a frame. In this case, many
coefficients ≈ 0.
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Fourier Compression

A simple illustration of this occurs with Fourier series in one dimension.
Let f (t) = sin(2πt). Instead of storing a discretized version of f , one can
simply store a couple of Fourier coefficients:

〈f ,e−2πim〉 =

∫ 1

0
sin(2πt)e2πitdt =


i
2 , m = 1
− i

2 , m = −1
0, else

This of course makes sense, since Fourier series represent signals as
sums of sin(t) and cos(t) of various frequencies, and our signal f (t) is a
pure sin(t).
We say that the signal f has a sparse Fourier representation.
This idea extends to richer classes of signals for other frames.
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Anisotropic Frames

Over the past decade, several new frames were developed that proved
very efficient for image processing tasks on images with smooth edges:
shearlets, curvelets, etc.
More precisely, for a certain class of data that models signals with
smooth edges, shearlets and ridgelets are known to provide near-optimal
sparsity.
This image class is known as cartoon-like images in the literature.
This allows them to compress and denoise these images very efficiently.
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Frames for Textured Images

While these frames are effective for images with edges, they are not
known to perform well for textured images.

Many interesting images fall into this regime, and thus there is a need to
develop anisotropic frames well-suited for textures.

Building on the knowledge that Gabor systems perform well empirically
for many image processing tasks with isotropic textural images, we
proposed to incorporate directionality into the construction.
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Directional Gabor frame elements

Definition

For g : R→ C and m, t ∈ R, u ∈ Sd−1 = {x ∈ Rd | x1 + x2 + ...+ xd = 1},

gm,t,u(x) := e2πim(u·x)g(u · x − t),m, t ∈ R, u ∈ Sd−1, x ∈ Rd

We seek a discrete system of the form

{gm,t,u}(m,t,u)∈Λ,

for L2([0,1]d ). We need to determine g,Λ that work.
Of course, d = 2 is of particular interest for image processing.
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Existence of Frames

Let Γ ⊂ Sd−1 × R be such that the mapping ψ : Γ→ Zd given by
(u,m) 7→ mu is a bijection. For any ω > 0, let

Λω = {(m,n,u) | (u,m) ∈ Γ,n ∈ ωZ}.

Theorem

Let g ∈ L2(R) be compactly supported and such that

∀k ∈ (Z/ω) \ {0}, ĝ(γ)ĝ(γ + k) = 0

almost everywhere. Furthermore, suppose it is not the case that ĝ is zero
almost everywhere on the interval [−1/4,1/4]. Then with Λω as above,
{gm,n,u}(m,n,u)∈Λω

is a discrete frame for the subspace of functions in L2(Rd )

with support contained in [−1/2,1/2]d .

Note that [− 1
2 ,

1
2 ]d may be replaced with [0,1]d , and a frame can still be

shown to exist, using the same methods.
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Image Processing Applications

We now consider two image processing applications for our frame:
compression and denoising.

To evaluate our method, we compare against several well-known isotropic
and anisotropic frames: wavelets, shearlets, and curvelets.

We consider images that are highly textural and also more natural ones
with more edges and textures.
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Test Images (1/2)

Figure: Texture images for numerical experiments. Top row, from left to right: straw,
rocks, grass. Middle row, from left to right: cracked mud, bricks, bars. Bottom row, from
left to right: fabric, grate, honeycomb.
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Test Images (2/2)

Figure: Real images for numerical experiments, from left to right: mandrill, boat, Lena.
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Compression Experiments

To perform compression, we compute the discrete frame coefficients, the
perform hard thresholding.

That is, we set a certain percentage of the smallest coefficients to 0, then
reconstruct by computing the inverse frame operator.

For our experiments, four levels of compression are considered,
parameterized by compression ratios of 10,25,50,100. These
correspond to 90%, 96%, 98%, 99% thresholding, respectively. We
evaluate quality by computing the mean squared error (`2 error) between
the compressed and original images.

The higher the level of compression, the more significant our storage
advantage. Conversely, higher levels of compression lead to higher
reconstruction errors.
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Compression Results

Method
Compression

Level
Straw Rocks Grass

Cracked
Mud

Bricks Bars Fabric Grate Honeycomb Mandrill Boat Lena

DGS,
nonre-
dun-
dant

90% .1099 .0353 .1451 .1501 .0851 .0395 .1699 .1381 .0361 .1799 .1288 .1332
96% .1574 .0561 .2032 .1960 .1021 .0598 .2140 .1728 .0541 .2051 .1570 .1719
98% .1921 .0778 .2407 .2225 .1138 .0869 .2366 .1964 .0696 .2174 .1782 .2026
99% .2212 .1042 .2703 .2437 .1253 .1299 .2521 .2196 .0870 .2279 .2002 .2373

DGS,
redun-
dant

90% .0453 .0158 .0597 .0633 .0412 .0170 .0692 .0640 .0148 .0906 .0619 .0642
96% .0859 .0292 .1107 .1169 .0693 .0324 .1309 .1113 .0288 .1464 .1043 .1098
98% .1176 .0410 .1525 .1538 .0865 .0457 .1695 .1416 .0408 .1766 .1310 .1401
99% .1509 .0563 .1934 .1855 .1005 .0630 .2018 .1688 .0546 .1985 .1541 .1688

Shearlab

90% .1191 .0521 .1808 .1613 .0912 .0439 .1651 .1675 .1003 .1509 .1079 .1380
96% .1946 .0961 .2542 .2222 .1335 .1166 .2364 .2581 .2582 .2105 .1682 .2303
98% .2784 .1528 .3136 .2824 .2482 .2861 .3079 .3443 .3974 .2516 .2379 .3202
99% .6367 .5639 .6131 .6250 .6541 .6699 .6647 .6675 .6879 .5590 .5694 .5264

FFST

90% .1292 .0820 .1926 .1742 .0979 .0467 .1864 .1925 .1115 .1769 .1300 .1607
96% .2393 .1760 .3025 .2600 .1849 .1918 .2778 .3104 .3589 .2767 .2392 .3354
98% .6037 .5776 .6061 .5874 .5786 .6274 .6085 .6209 .6655 .5910 .5230 .5771
99% .7860 .7668 .7884 .7873 .7961 .8015 .7991 .8164 .8413 .7679 .7250 .7438

Curvelab

90% .1297 .0378 .1613 .1593 .1232 .1255 .2013 .2224 .2334 .1370 .0979 .1059
96% .1822 .0613 .2221 .2112 .1829 .1874 .2582 .2906 .3440 .1898 .1469 .1687
98% .3062 .1709 .3136 .3134 .3186 .3549 .3584 .3977 .4562 .2734 .2243 .2499
99% .6395 .5963 .6147 .6380 .6729 .6959 .6847 .7028 .7435 .5959 .5926 .5070

Wavelet

90% .1569 .0407 .1607 .1504 .1084 .1148 .2019 .2546 .3033 .1528 .0937 .1008
96% .2008 .0642 .2137 .1991 .1642 .1804 .2461 .2967 .3534 .1926 .1380 .1609
98% .2261 .0859 .2482 .2277 .1957 .2107 .2677 .3155 .3728 .2136 .1682 .2043
99% .2469 .1134 .2771 .2521 .2168 .2331 .2824 .3275 .3838 .2320 .1962 .2473

Table: Compression errors.
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Visual Evaluation of Compression

Figure: Compressed images for straw texture. The rows correspond to level of
compression: from top to bottom, 90%, 96%, 98%, 99%. The columns correspond to
method; from left to right: non-redundant directional Gabor frame, redundant
directional Gabor frame, ShearLab, FFST, Curvelab, wavelet.
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Image Denoising

Frames are also useful denoising tools, motivated by the notion that
large-valued frame coefficients values represent signal, and small-valued
frame coefficients represent noise.
One can then attempt to remove the noise while preserving the signal by
reconstructing only with the largest frame coefficients; this is known as
hard-thresholding frame denoising:

f̃ =
∑
i∈Ĩ

〈f , φi〉φ̃i .

for the largest frame coefficients {〈f , φi〉}i∈Ĩ .
We consider experiemtents in which our images have been synthetically
corrupted with Gaussian (white) noise, and we attempt to reconstruct the
original image as accurately as possible. Quality of performance is
measured in peak-signal-to-noise ratio (PSNR), which is basically
rescaled mean-square error.
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Denoising Results

Image
DGS,

non-redundant
DGS

redundant
SL PSNR FFST PSNR CL PSNR

Wavelet
PSNR

Straw 16.1568 16.9645 15.9545 15.8711 15.5610 15.2016
Rocks 19.6596 19.6498 18.2772 15.9770 19.3774 19.0008
Grass 18.0498 18.1756 17.9382 17.4305 17.9655 17.9847

Cracked Mud 15.5964 16.1645 15.2524 15.0387 15.1937 15.2714
Bricks 21.8677 20.9070 19.7579 19.5595 18.4367 18.9953
Bars 21.6415 21.1399 19.0507 19.2957 17.6218 18.2207

Fabric 16.2813 16.5387 15.7118 15.6807 15.2957 15.5106
Grate 17.7373 17.8509 15.5762 15.6462 14.7761 14.9119

Honeycomb 19.9771 19.6670 14.6194 15.2500 12.8580 11.7106
Mandrill 16.5017 16.5743 16.4203 15.1830 16.5653 16.2576

Boat 17.9514 18.0641 17.6947 16.4199 18.2324 18.0268
Lena 17.3064 17.6526 16.5380 15.3970 17.1781 16.7578

Table: Best-case thresholding PSNR for denoising experiments.
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Visual Evaluation of Denoising

Figure: Denoising results for straw. First row, left to right: original, noisy, denoised with
non-redundant directional Gabor system, denoised with redundant directional Gabor
system. Second row, left to right: denoised with shearlab shearlets, denoised with
FFST shearlets, denoised with curvelab curvelets, denoised with wavelets.
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Conclusions and Future: Theoretical Guarantees, Fast
Algorithms, Applications

Incorporating directionality into Gabor systems generates frames that
offer strong performance for compression and denoising.
This is particularly so for textural images, but for images with both
textures and edges, results are more mixed.
Developing a theory for why directional Gabor systems perform well
numericaly for textural images is the outstanding mathematical question.
The algorithm we deploy for our frame requires a numerical inversion of a
matrix to compute the frame reconstruction, which is slower than many
available frame representation packages; developing a fast algorithm will
great improve our method’s applicability.
We have tested our method on standard image processing images but
finding a rich class of real textured but noisy images would extend the
applicability of our method.
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