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Measures of Segregation

® How to think about segregation on graphs coming from
geography?
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Hispanic Population in Chicago Black Population in Chicago

¢ What metrics capture the intuition that these populations
are highly segregated? Tufts
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From Intuitive Description to Formal Math

® “A geographic area 1s segregated when most of a unit’s
neighbors are in the same group as the unit.”

® Tine, but vague. What is a region? Who are neighbors?
What 1s a group?

® Qur approach is to use graph theory and tunctions on
oraphs to formalize this. Then, we can start asking
mathematical questions and proposing new approaches.
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What Should a Segregation Metric Do?

1. Capture intuttion in important cases.

“T'his population in this city looks segregated and mry metric agrees”

2. Allow tfor comparisons on the same geographic region.

“In City 1, population A is more segregated than population B”
3. Allow for comparisons across different geographic regions.
“Poputation A is more segregated in City 1 than in City 27

4.  Admit theoretical guarantees on performance.

Any population with X properties will be classified as segregated by my metric.”
Tufts



Informal Definition

A graph (@ i1s a collection of nodes and edges between nodes.
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Adjacency Matrix

* A graph: nodes (e.g;, census tracts) with edges between them

(e.g., an edge between adjacent tracts that touch).

nodes

0 if there is no edge between the ;" and jth

and A;; = 1 if there is.

® [et G have n nodes. Let A be an n X n matrix with

"
A AD
RRRRI

ﬂu«v

SR
R

N

UNIVERSITY

Tufts



Moran’s I

® Our jumping-ott point is Morans I, which takes in a graph and
function on the graph and gives a number that can be
interpreted as measuring segregation.

Definition. Let W € R™*™ be a matrix that is not the zero matriz, and let

n
W = Z (Wi;l. Let v denote the mean of a vector v. Moran’s I with respect to
i,j=1
W s a functional I( - ;W) : R™ — R defined by

I(V; W) = n Z Wij(vi — \_/)(’Uj — \_/) / (w Z(vz — V)2> :

2,J=1

® Most commonly, we take W = A. Other choices have
interesting properties as well.
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Intuition and Toy Example
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Does Moran’s T Work?

® The major claims in the geography literature around I are
that it takes values in |—1, 1] with

I(v;A)~1 <— v is highly segregated

e We wanted to prove these results.

® Main finding: they are roughly true when the graph
(encoded by A) is highly structured, but not when A 1s
irregular.
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Spectrum of Graph Determines I Range

Theorem. Let A be the adjacency matrix of an undirected graph G. Then the

range of possible I values satisfies I(X; A) C [%”, %}

® Here, Ay, A1 are the smallest and largest eigenvalues of the
adjacency matrix.

® Here, dis the average degree (number of edges at a node) of the

graph.

® So, this result establishes the conventional wisdom pertaining to
Moran’s I in the case when —A, = d = A1, This is exactly
when the graph 1s regular.
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Regular Graphs

e Jf all nodes in a graph have the same number of edges, we say

the graph 1s regular.

Corollary. Let A be the adjacency matriz of an undirected, reqular graph G.
Then the range of possible I values satisfies I(X;A) C [—1,1].

® This follows from bounding the eigenvalues of the graph in
terms of the degree when the graph is regular.

® So, the folklore result on how to understand I is true at least
when the graph is regular.
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Contrived Counterexample

—1/a

1/a

Looks nothing like a graph coming from geography.

But, when the number of nodes 1s large, I approachesa.

In particular, T can be made arbitrarily large or small!

The problem is the very high degree nodes—extremely
irregular.
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Are Geography Graphs Close to Regular?

) 6-6-6-6-60666060660666666666666060606606606666
1 0-0-6666666600666606006660606600666606666¢
0 0-0666666660600666600600666060066600666060666¢
0 6-0666666666006666060066000660606606066¢

&

¢

¢

¢

&

¢

z

) 6-6-6-6-66066660666066666666606060666066066066¢
0 6-0-666060666006666000666600600660060666060666060¢
0 00-66660666066660006660606006660006660606066060-¢
0 66066666066606666600666060066600666666606¢
) 6-6-6-6-6606606606660606666666660606066066066066¢
0 6-0-6660066666006666060066660060066000666060666060
0 00-66606060666066660066660060066600666060666060¢
. 660666660666066660600666060066600666666606¢
30000000000000000000000000000000000
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

¢

0 0-6666606666606606066660666066666¢
1 0-666660666600660066606660666606¢
1 00666600660006000660066060666064¢
 20660006000060006060066060666064
0 0-6666606666066060666606660666606¢
1 0-6666606666006600666066606666064¢
 006666006600060006660066060666064¢
 20660006000060006060066060666064
0 0-66666066666066060666606660660666¢

 ©-6-666660666066660666660666¢
) 6-6-6-66666660666606666060666¢

2-Regular Almost 4-Regular

Not So Regular...

Tufts

Not So Regular... UNIVERSITY



Actual Maximizers (Computed Numerically)

v =14 . I(v;A) =0.99803
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Generalized Eigenvector Formulation

Theorem. Let W be a symmetric n X n weight matrixz and let 11 be the projection onto the space of mean 0

vectors. Let {(\;, ®;)}"=! be II-orthonormal generalized eigenvectors for the pair (HIWIL II). Then for all
non-zero v € R™*1,

n—1
(a) v= <Z oz,HCI)Z-) + v1, for some coefficients {ozi}?:_ll.
i=1
n—1 n—1
(b) I(v; W) = Zaf)\i/Zoz?.
i=1 i=1

® This gives a decomposition tool to see what kinds of
things make for large and small T.

® Also amenable to fast numerical computation in some
cases.
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Can We Compare with I ?

® Qur spectral analysis allows us to answer the question: “are two
functions on a network similar if they have similar I values™?

® (Qualitatively yes, 7/ L1s very large or very small.
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Can We Compare with L ?

I(v;A) =0 I(v;A) =0
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® When I is close to 0, “mixing” of different structures (e.g.,
clusters, localized checkerboards) makes inference ditficult.

® Note: the spectral decomposition 1s what makes this “mixing”
argument precise and practical.
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Connection With Fourier Analysis

® By replacing the adjacency matrix with the graph Laplacian

L:D—A(D,LZ:ZAU,DZQ:OfOI'Z#])

j=1

we may interpret measures of spatial segregation in the context
ot Fourier analysis on graphs.

® Fourier analysis decomposes a function/signal into sines
and cosines, capturing the oscillatory structure in the data.
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Laplacian Oscillation on Graphs
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High Segregation <—> Low Energy

® Under this interpretation, highly segregated functions
correspond to slowly oscillating Fourier modes, i.e. those
with low energy.

® Highly anti-segregated functions (those with typical
neighbor values different from themselves) are high energy.

® The high energy interpretation does break down due to the
irregularity of real geography graphs.
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High Energy and Localization
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Highest Energy, Regular Graph Highest Energy, Almost Regular Graph Highest Energy, Irregular Graph
For highly regular graphs, there is a sense of “oscillation” in the highest frequency
Fourier mode.
Things are weirder in irregular graphs.
Problem: characterize high-frequency functions on irregular graphs. T fts
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Random Walks and 1

® One can imagine a random walk on the graph, where a walker
must move to one ot its neighbors (all with equal probability)
at each time step.
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Start After 10 Steps of Random Walk
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Does Row-Normalizing Help?

—1/a

1/a

¢ [et P=D"'A be the row-normalized random walk matrix.
e I(-, P) still blows up on this class of graphs!

e (Conventional wisdom around row-normalization is false.

Tufts



Random Walks and I

® 'This allows us to interpret T as a correlation across time
steps.

® [f there is a large degree of correlation across time, this
indicates either very large or very small I values.
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(Bistochastic) Random Walks and I

Theorem. For a bistochastic matriz Q and a column vector v, consider w =v' Q, the value of v after one
step of the Markov chain given by (). Let oy and o1 be the standard deviation of the values in v and w
respectively, so that the ratio o1 /0y gives the variance reduction in one step of the walk. Let p(v,w) be the
correlation between the values in v and w. Let x =v — vl and y = w — w1l be the zero-centered vectors before
and after applying (). Then

e 1:QQ") = (2)

T x
—

<

o1

= p(v,w) - ZL.

o I(v;Q) =

X
X

* So, bistochastic matrices have a nice interpretation.

* They also address the unboundedness issues.

* Lazy choice we like: uniformizing Metropolis-Hastings matrix.
Mij — min{Pij, Pji}) Z #]
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NC County Duals: P v. M
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Take Aways

Graph theory (and linear algebra more generally) lets us
investigate the properties of classical segregation measures.

Commonly claimed properties of T do not hold in general,
but only in highly structured cases.

Comparing T within the same graph allows for certain
qualitative inferences, but only in extreme cases.

Interpretations in the language ot Fourier analysis and
random walks can illuminate.

Maybe use M ?
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Optimal Transport on Graphs to Compare?

® Need to be able to compare across graphbs.

® This can be formulated as a transport problem: map a
distribution from one network to another in a cost minimizing
way.

 Computational challenges, but has potential to allow for
meaningtul comparisons of communities on different graphs.

Want to Compare Distributions
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