Analytic Methods for Measuring Network Segregation

James M. Murphy
Department of Mathematics
October 6, 2022

Measures of Segregation

• How to think about segregation on graphs coming from geography?

Hispanic Population in Chicago

Black Population in Chicago

• What metrics capture the intuition that these populations are highly segregated?

From Intuitive Description to Formal Math

• "A geographic area is segregated when most of a unit's neighbors are in the same group as the unit."

• Fine, but vague. What is a region? Who are neighbors? What is a group?

• Our approach is to use graph theory and functions on graphs to formalize this. Then, we can start asking mathematical questions and proposing new approaches.

What Should a Segregation Metric Do?

- 1. Capture intuition in important cases.
 - "This population in this city looks segregated and my metric agrees"
- 2. Allow for comparisons on the same geographic region.
 - "In City 1, population A is more segregated than population B"
- 3. Allow for comparisons across different geographic regions.
 - "Population A is more segregated in City 1 than in City 2"
- 4. Admit theoretical guarantees on performance.
- "Any population with X properties will be classified as segregated by my metric."

Informal Definition

A graph G is a collection of nodes and edges between nodes.

Adjacency Matrix

- A graph: nodes (e.g., census tracts) with edges between them (e.g., an edge between adjacent tracts that touch).
- Let \mathcal{G} have n nodes. Let A be an $n \times n$ matrix with $A_{ij} = 0$ if there is no edge between the i^{th} and j^{th} nodes and $A_{ij} = 1$ if there is.

Moran's I

• Our jumping-off point is *Moran's* I, which takes in a graph and function on the graph and gives a number that can be interpreted as measuring segregation.

Definition. Let $W \in \mathbb{R}^{n \times n}$ be a matrix that is not the zero matrix, and let $w = \sum_{i,j=1}^{n} |W_{ij}|$. Let $\bar{\mathbf{v}}$ denote the mean of a vector \mathbf{v} . Moran's \mathbf{I} with respect to W is a functional $\mathbf{I}(\cdot;W):\mathbb{R}^n \to \mathbb{R}$ defined by

$$I(\mathbf{v}; W) := \left(n \sum_{i,j=1}^{n} W_{ij} (v_i - \bar{\mathbf{v}}) (v_j - \bar{\mathbf{v}}) \right) / \left(w \sum_{i=1}^{n} (v_i - \bar{\mathbf{v}})^2 \right).$$

• Most commonly, we take W = A. Other choices have interesting properties as well.

Intuition and Toy Example

Does Moran's I Work?

• The major claims in the geography literature around I are that it takes values in [-1,1] with

$$I(v; A) \approx 1 \longleftrightarrow v \text{ is highly segregated}$$

• We wanted to *prove* these results.

• <u>Main finding</u>: they are roughly true when the graph (encoded by A) is highly structured, but not when A is irregular.

Spectrum of Graph Determines I Range

Theorem. Let A be the adjacency matrix of an undirected graph \mathcal{G} . Then the range of possible I values satisfies $I(X;A) \subseteq \left[\frac{\lambda_n}{d}, \frac{\lambda_1}{d}\right]$.

- Here, λ_n , λ_1 are the smallest and largest eigenvalues of the adjacency matrix.
- Here, \overline{d} is the average degree (number of edges at a node) of the graph.
- So, this result establishes the conventional wisdom pertaining to Moran's I in the case when $-\lambda_n = \bar{d} = \lambda_1$. This is exactly when the graph is *regular*.

Regular Graphs

• If all nodes in a graph have the same number of edges, we say the graph is *regular*.

Corollary. Let A be the adjacency matrix of an undirected, regular graph \mathcal{G} . Then the range of possible I values satisfies $I(X;A) \subseteq [-1,1]$.

- This follows from bounding the eigenvalues of the graph in terms of the degree when the graph is regular.
- So, the folklore result on how to understand I is true at least when the graph is regular.

Contrived Counterexample

- Looks nothing like a graph coming from geography.
- But, when the number of nodes is large, I approaches a.
- In particular, I can be made arbitrarily large or small!
- The problem is the very high degree nodes—extremely irregular.

Are Geography Graphs Close to Regular?

Almost 4-Regular

Not So Regular...

Actual Maximizers (Computed Numerically)

$$v = v_{max}^A, \ I(v; A) = 0.99803$$

$$v = v_{max}^A, \ I(v; A) = 1.0763$$

$$v = v_{max}^A, \ I(v; A) = 1.0211$$

$$v = v_{max}^A, I(v; A) = 1.1034$$

Generalized Eigenvector Formulation

Theorem. Let W be a symmetric $n \times n$ weight matrix and let Π be the projection onto the space of mean 0 vectors. Let $\{(\lambda_i, \Phi_i)\}_{i=1}^{n-1}$ be Π -orthonormal generalized eigenvectors for the pair $(\Pi W \Pi, \Pi)$. Then for all non-zero $v \in \mathbb{R}^{n \times 1}$,

(a)
$$\mathbf{v} = \left(\sum_{i=1}^{n-1} \alpha_i \Pi \Phi_i\right) + \bar{v}\mathbf{1}$$
, for some coefficients $\{\alpha_i\}_{i=1}^{n-1}$.

(b)
$$I(v; W) = \sum_{i=1}^{n-1} \alpha_i^2 \lambda_i / \sum_{i=1}^{n-1} \alpha_i^2$$
.

- This gives a decomposition tool to see what kinds of things make for large and small I.
- Also amenable to fast numerical computation in some cases.

Can We Compare with I?

- Our spectral analysis allows us to answer the question: "are two functions on a network similar if they have similar I values"?
- Qualitatively yes, if I is very large or very small.

Can We Compare with I?

• When I is close to 0, "mixing" of different structures (e.g., clusters, localized checkerboards) makes inference difficult.

• Note: the spectral decomposition is what makes this "mixing" argument precise and practical.

Connection With Fourier Analysis

• By replacing the adjacency matrix with the graph Laplacian

$$L = D - A \ (D_{ii} = \sum_{j=1}^{n} A_{ij}, \ D_{ij} = 0 \text{ for } i \neq j)$$

we may interpret measures of spatial segregation in the context of *Fourier analysis* on graphs.

• Fourier analysis decomposes a function/signal into sines and cosines, capturing the *oscillatory structure* in the data.

Laplacian Oscillation on Graphs

High Segregation <—> Low Energy

- Under this interpretation, highly segregated functions correspond to slowly oscillating Fourier modes, i.e. those with low energy.
- Highly anti-segregated functions (those with typical neighbor values different from themselves) are high energy.
- The high energy interpretation does break down due to the irregularity of real geography graphs.

High Energy and Localization

Highest Energy, Regular Graph

Highest Energy, Almost Regular Graph

Highest Energy, Irregular Graph

- For highly regular graphs, there is a sense of "oscillation" in the highest frequency Fourier mode.
- Things are weirder in irregular graphs.
- Problem: characterize high-frequency functions on irregular graphs.

Random Walks and I

• One can imagine a random walk on the graph, where a walker must move to one of its neighbors (all with equal probability) at each time step.

Does Row-Normalizing Help?

- Let $P = D^{-1}A$ be the row-normalized random walk matrix.
- $I(\cdot, P)$ still blows up on this class of graphs!
- Conventional wisdom around row-normalization is false.

Random Walks and I

- This allows us to interpret I as a *correlation* across time steps.
- If there is a large degree of correlation across time, this indicates either very large or very small I values.

(Bistochastic) Random Walks and I

Theorem. For a bistochastic matrix Q and a column vector \mathbf{v} , consider $\mathbf{w} = \mathbf{v}^{\top}Q$, the value of \mathbf{v} after one step of the Markov chain given by Q. Let σ_0 and σ_1 be the standard deviation of the values in \mathbf{v} and \mathbf{w} respectively, so that the ratio σ_1/σ_0 gives the variance reduction in one step of the walk. Let $\rho(\mathbf{v}, \mathbf{w})$ be the correlation between the values in \mathbf{v} and \mathbf{w} . Let $\mathbf{x} = \mathbf{v} - \bar{v}\mathbf{1}$ and $\mathbf{y} = \mathbf{w} - \bar{w}\mathbf{1}$ be the zero-centered vectors before and after applying Q. Then

•
$$\mathbf{I}(\mathbf{v}; QQ^{\top}) = \left(\frac{\sigma_1}{\sigma_0}\right)^2$$
.

•
$$I(\mathbf{v}; Q) = \frac{\mathbf{y}^{\top} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} = \rho(\mathbf{v}, \mathbf{w}) \cdot \frac{\sigma_1}{\sigma_0}$$
.

- So, bistochastic matrices have a nice interpretation.
- They also address the unboundedness issues.
- Lazy choice we like: uniformizing Metropolis-Hastings matrix.

$$M_{ij} = \min\{P_{ij}, P_{ji}\}, i \neq j$$

NC County Duals: P v. M

M

Take Aways

- Graph theory (and linear algebra more generally) lets us investigate the properties of classical segregation measures.
- Commonly claimed properties of I do not hold in general, but only in highly structured cases.
- Comparing I within the same graph allows for certain qualitative inferences, but only in extreme cases.
- Interpretations in the language of Fourier analysis and random walks can illuminate.
- Maybe use M?

Optimal Transport on Graphs to Compare?

- Need to be able to compare across graphs.
- This can be formulated as a transport problem: map a distribution from one network to another in a cost minimizing way.
- Computational challenges, but has potential to allow for meaningful comparisons of communities on different graphs.

Collaborators, References, Acknowledgements

Thomas Weighill, UNC Greensboro

- Duchin and Murphy. *Measuring Clustering and Segregation*, Political Geometry. Birkhäuser. 2022.
- Duchin, Murphy, and Weighill. *Measuring Segregation via Analysis on Graphs*. SIAM Journal on Matrix Analysis and Applications (to Appear). arXiv:2112.10708

DMS 1912737 DMS 1924513 CCF-1934553

