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Unsupervised and Active Learning

Unsupervised learning assigns labels to datapoints {xi}ni=1 ⊂ RD without training examples. In active
learning, an algorithm may query a small number of parsimoniously chosen labels to help label the full
dataset. Both unsupervised and active learning are important when large training sets are costly or un-
available. Unsupervised and active learning may be challenging when the underlying data is non-spherical,
exhibits poor class separation, is corrupted by noise, or embedded in a high-dimensional space.
The classical spectral clustering algorithm [1; 2] computes the eigenfunctions of a graph Laplacian de-
fined on a graph generated from X via weight matrix Wij = exp(−ρ(xi, xj)

2/σ2), for some metric ρ and
constant σ. The eigenfunctions are consequently used as features in K-means [3].

Algorithm 1: Classical Spectral Clustering

Input: {xi}ni=1 (Data) , σ > 0 (Scaling parameter)
Output: Y (Labels)

1: Compute the weight matrix W ∈ Rn×n with Wij = exp(−ρ(xi, xj)
2/σ2).

2: Compute the diagonal degree matrix D ∈ Rn×n with Dii =
∑n

j=1Wij.

3: Form the symmetric normalized Laplacian LSYM = I −D− 1
2WD−

1
2 .

4: Compute the eigendecomposition {(φk, λk)}nk=1, sorted so that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
5: Estimate the number of clusters K as K̂ = arg maxk λk+1 − λk.
6: For 1 ≤ i ≤ n, let vi = (φ1(xi), φ2(xi), . . . , φK̂(xi))/||(φ1(xi), φ2(xi), . . . , φK̂(xi))||2 define the (row

normalized) spectral embedding.
7: Compute labels Y by running K-means on the data {vi}ni=1 using K̂ as the number of clusters.

Spectral clustering may struggle for elongated, poorly separated data, is highly sensitive to σ, and is poor
at estimating K; see below.
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Figure 1: Left to Right : Raw data; embedding into R3, labels learned from spectral clustering.

We propose methods that enjoy performance guarantees with respect to:

1. Labeling accuracy: How good are the clustering labels?

2. Estimating K: Under what conditions does an unsupervised algorithm correctly estimate K?

3. Parameter robustness: How to learn the parameters of the algorithm without cross validation?

Spectral Clustering with Ultrametric Path Distances

We propose to use ultrametric path distances for spectral clustering.

Definition. For X = {xi}ni=1 ⊂ RD, let G be the complete graph on X with edges weighted by Euclidean
distance between points. For xi, xj ∈ X, let P(xi, xj) denote the set of all paths connecting xi, xj in G. The
longest-leg path distance (LLPD) is:

ρ``(xi, xj) = min
{yl}Ll=1∈P(xi,xj)

max
l=1,2,...,L−1

‖yl+1 − yl‖2.

The LLPD robustly compresses within-cluster distances while exacerbating between-cluster distances. The
following simplified result characterizes the performance of LLPD spectral clustering [4]. Let n1, . . . , nK ,
be the number of samples from intrinsically d-dimensional clusters, nmin = mink=1,...,K nk and let ñ be the
number of D-dimensional noise points, d ≤ D. Denoise the data by removing points with LLPD to their knse

nearest neighbor ≤ θ. Let the clusters be separated by minimum distance δ.

Theorem. Under a suitable low-dimensional data model, suppose that ñ ≤
(
C2

C1

) knseD
knse+1

n
D

d+1( knse
knse+1)

min . Let

fσ(x) = e−x
2/σ2

be the Gaussian kernel and assume knse = O(1). Suppose the clusters are of comparable

size. If nmin is large enough and σ satisfies C1n
− 1

d+1

min ≤ θ ≤ C2ñ
−( knse+1

knse
) 1
D , C3θ ≤ σ ≤ C4δ, then with high

probability the denoised LDLN data XN satisfies:

(i) the largest gap in the eigenvalues of LSYM is λK+1 − λK.
(ii) spectral clustering with LLPD with K principal eigenvectors achieves perfect accuracy on XN .

The constants {Ci}4
i=1 depend on geometric properties of the data, but do not depend on n1, . . . , nK , ñ, θ, σ.

Consider high dimensional image data from the COIL database [5]. Below, we plot the eigenvalues for a
graph Laplacian constructed with Euclidean distances and the LLPD, for a range of σ values. We see that
there is a large gap between the 16th and 17th eigenvalues when the LLPD Laplacian is used, indicating
that LLPD spectral clustering correctly estimates there are 16 clusters, for a range of σ values.
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Figure 2: Left to Right : Representative COIL images; Euclidean multiscale eigenvalues; LLPD multiscale eigenvalues.

LUND: Learning by Unsupervised Nonlinear Diffusion

While longest leg path distances are powerful for unsupervised clustering, they are not robust to high den-
sity bottlenecks between clusters. Diffusion distances are a family of multiscale metrics that resolve such
structures [6; 7]. For an ergodic Markov transition matrix P with stationary distribution π defined on
{xi}ni=1 ⊂ RD, the diffusion distance between xi, xj at time t is

Dt(xi, xj) =

√√√√ n∑
`=1

(P t
i` − P t

j`)
2

1

π(`)
.

The learning by unsupervised nonlinear diffusion (LUND) algorithm enjoys performance guarantees and has
shown state-of-the-art clustering performance on hyperspectral images [8; 9].

Algorithm 2: LUND

Input: X (data), σ0 (kernel density bandwidth), σ (diffusion scaling parameter), t (time
parameter), τ (threshold)

Output: Y (cluster assignments), K̂ (estimated number of clusters)

1: Build Markov transition matrix P using scale parameter σ.
2: Compute an empirical density estimate p(x) for all x ∈ X using kernel bandwidth σ0.
3: Compute ρt(x), the distance to x’s Dt-nearest neighbor of higher density, for all x ∈ X.
4: Compute Dt(x) = ρt(x)p(x) for all x ∈ X.
5: Sort X according to Dt(x) in descending order as {xmi

}ni=1, n = |X|.
6: Compute K̂ = inf{k |Dt(xmk

)/Dt(xmk+1
) > τ .

7: Assign Y (xmi
) = i, i = 1, . . . , K̂, and Y (xmi

) = 0, i = K̂ + 1, . . . , n.
8: In order of decreasing p(x) value, assign each point the same label as its nearest neighbor of higher

density.

For well-separated, coherent clusters X =
⋃K
k=1 Xk (quantified by geometric constants {Ci}5

i=1), there is a
range of t for which diffusion distances are small within a cluster and large between a cluster. Let

Din
t = max

k=1,...,K
max
x,y∈Xk

Dt(x, y), Dbtw
t = min

k 6=k′
min

x∈Xk,y∈Xk′
Dt(x, y).

Theorem. Let X =
⋃K
k=1Xk and let P be a corresponding Markov transition matrix on X, inducing diffu-

sion distances {Dt}t≥0. Then there exist constants {Ci}5
i=1 ≥ 0 such that the following holds: for any ε > 0,

and for any t satisfying C1 ln
(
C2

ε

)
< t < C3ε, we have Din

t ≤ C4ε,D
btw
t ≥ C5 − C4ε.

These estimates translate to performance guarantees on the LUND algorithm itself. Let M be the density
maximizers of distinct classes.

Theorem. Suppose X =
⋃K
k=1Xk as above. LUND labels all points accurately, and correctly estimates K,

provided that Din
t /D

btw
t < min(M)/max(M).

The LUND algorithm can be adapted to analyze high-dimensional hyperspectral data [10; 11], shown below.

Figure 3: Left to Right : Compressed Indian Pines HSI; Indian Pines ground truth; high confidence LUND labels; spatially regularized LUND labels.

Active Learning With Diffusion Geometry

The LUND approach may be modified into an active learning algorithm by querying the learned modes for
labels, rather than assuming they belong to distinct classes [12]. This increases robustness to the types of
distributions that can be learned with diffusion geometry, and is comparable to cluster-based active learn-
ing [13]. Some results comparing the resulting learning by active nonlinear diffusion (LAND) algorithm to
related active learning methods for hyperspectral data appear below.
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Figure 4: Left to Right : Compressed Salinas A HSI; Salinas A ground truth; active learning results as a function of number of queries.

Related methods based on querying points near the estimated cluster boundaries are also possible [14].

Code, Contact, Collaborators

• Code and papers: https://jmurphy.math.tufts.edu/

• Contact: jm.murphy@tufts.edu

• Partially joint with Anna Little (Michigan State) and Mauro Maggioni (Johns Hopkins)
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