Homework 10 MATH 165 - Fall 2020 Tufts University, Department of Mathematics Due: November 19, 2020

1. BOOK QUESTIONS

Grinstead and Snell: Section 9.1, #1, #8, #15; 9.2, #2, #15

2. SUPPLEMENTAL QUESTION (CONVERGENCE RATE OF CLT)

Recall the following formulation of the central limit theorem.

Theorem. (CLT) Let $\{X_i\}_{i=1}^n$ be i.i.d. random variables with common mean μ and common variance $\sigma^2 > 0$. Let $S_n^* = \frac{1}{\sqrt{n\sigma^2}} \left(\sum_{i=1}^n X_i - n\mu \right)$. Then for all a > b, $\lim_{n \to \infty} \mathbb{P}(a < S_n^* < b) = \frac{1}{\sqrt{2\pi}} \int_a^b \exp(-z^2/2) dz$.

We are interested in how fast the limit on the left converges to the integral on the right.

- (a) Let X_i be uniform on [0, 1]. Compute μ, σ^2 .
- (b) Using the results in (a), for the $n \in \{100, 200, 300, 400, \dots, 10000\}$, compute 100 random samples from S_n^* , and use Monte Carlo to estimate $\mathbb{P}(-1 < S_n^* < 1)$ as a function of n.
- (c) Using the results in (b), plot the estimated error

$$E_n = \frac{\left| \mathbb{P}(-1 < S_n^* < 1) - \frac{1}{\sqrt{2\pi}} \int_{-1}^1 \exp(-z^2/2) dz \right|}{\frac{1}{\sqrt{2\pi}} \int_{-1}^1 \exp(-z^2/2) dz}$$

as a function of n.

(d) Can you describe the shape of the error curve? *Hint: Consider the log-log plot of* $\log(E_n)$ *versus* $\log(n)$.