Homework 5
 MATH 165 - Fall 2020

Tufts University, Department of Mathematics
Due: October 15, 2020

1. Book Questions

Grinstead and Snell: Section $4.3 \# 1$; Section 5.1, \#6, \#24; Section 5.2, \#9, \#37

2. Supplemental Question (Benford Distributions)

Let N be a fixed positive integer. A random variable X on $\{1,2, \ldots, N-1\}$ has a Benford distribution if its distribution function is $m_{X}(k)=\mathbb{P}(X=k)=\log _{N}(k+1)-\log _{N}(k)$.
(a) Show that m_{X} actually defines a probability distribution on $\{1,2, \ldots, N-1\}$.
(b) Let $\left\{x_{i}\right\}_{i=1}^{1000}$ be an i.i.d. sample from $\operatorname{Unif}([0,1])$. Let $y_{i}=10^{x_{i}}$. Show empirically that the leading digit (i.e. first non-zero digit) of the $\left\{y_{i}\right\}_{i=1}^{1000}$ is approximately a Benford distribution with $N=10$.
(c) What about the second digit of the $\left\{y_{i}\right\}_{i=1}^{1000}$?
(d) Give an intuitive explanation for (b).
(e) What happens as N increases?

