Homework 1

MATH 123 - Spring 2023
Tufts University, Department of Mathematics
Due: January 26, 2023

1. Question 1

Recall that for a matrix $A=\left(A_{i j}\right)_{i, j=1}^{n} \in \mathbb{R}^{n \times n}$ and a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n \times 1}$, matrix-vector multiplication is defined as $(A x)_{i}=\sum_{k=1}^{n} A_{i k} x_{k}$. Prove that matrix-vector multiplication is linear, i.e.

$$
\forall x, y \in \mathbb{R}^{n \times 1}, A(x+y)=A x+A y
$$

and

$$
\forall \alpha \in \mathbb{R}, x \in \mathbb{R}^{n \times 1}, A(\alpha x)=\alpha A x
$$

2. Question 2

Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and let $\mathbf{0}=(0,0, \ldots, 0) \in \mathbb{R}^{n}$ denote the vector of all zeros, understood as a column or row vector from context. Prove that if A has an eigenvalue of 0 with associated eigenvector $x \neq \mathbf{0}$, then A is not invertible. In particular, what can you say about the null space of A, namely $\left\{x \in \mathbb{R}^{n \times 1} \mid A x=\mathbf{0}\right\}$?

3. Question 3

Define the ℓ^{2} norm of $x \in \mathbb{R}^{n}$ to be

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

Prove that $\|\cdot\|_{2}$ is indeed a norm, that is, show that each of the following properties holds:
(1) $\forall x \in \mathbb{R}^{n},\|x\|_{2} \geq 0$.
(2) $\|x\|_{2}=0 \Longleftrightarrow x=\mathbf{0}$.
(3) $\forall \alpha \in \mathbb{R}, x \in \mathbb{R}^{n},\|\alpha x\|_{2}=|\alpha|\|x\|_{2}$.
(4) $\forall x, y \in \mathbb{R}^{n},\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2}$.

Conditions (1) and (2) together refer to being positive definite. Condition (3) refers to absolute homogeneity. Condition (4) is often called the triangle inequality, owing to its geometric interpretation in the case $n=2$.

4. Question 4

Suppose $\left(x_{1}^{1}, x_{1}^{2}\right),\left(x_{2}^{1}, x_{2}^{2}\right), \ldots,\left(x_{n}^{1}, x_{n}^{2}\right) \subset \mathbb{R}^{2}$ are sampled from a line $x_{2}=\alpha x_{1}$, for some $\alpha \in \mathbb{R}$. Prove that the (empirical) covariance matrix is rank at most 1 , i.e. one of its eigenvalues is necessarily 0 .

5. Question 5

In MATLAB, run 'HW1.m,' to get the data X_Circle, consisting of uniformly sampled points from the interior of a ball in \mathbb{R}^{2}, and X_Ellipse, consisting of uniformly sampled points near an ellipse in \mathbb{R}^{2}.
(a) In MATLAB, compute the two principal components of X_Circle from the definition in terms of the covariance matrix. Do not use the build-in 'pca' function. Do they have geometric significance for this data? Discuss.
(b) In MATLAB, compute the two principal components of X_Ellipse from the definition in terms of the covariance matrix. Do not use the build-in 'pca' function. Do they have geometric significance for this data? Discuss.

