Homework 2

MATH 123 - Spring 2023
Tufts University, Department of Mathematics
Due: February 2, 2023

1. Question 1

Let $\Sigma \in \mathbb{R}^{d \times d}$ be symmetric. Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the function $F(u)=u^{T} \Sigma u$, where u is understood as a column vector, i.e. as $u \in \mathbb{R}^{d \times 1}$. Show

$$
\frac{\partial F}{\partial u}=2 \Sigma u
$$

2. Question 2

Recall that the variance of a set of numbers $x_{1}, \ldots x_{n} \in \mathbb{R}$ is $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$, where $\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the mean. For each of the following statements, prove or give a counterexample.
(a) The variance is translation invariant, i.e. the variance of x_{1}, \ldots, x_{n} is the same as the variance of the translated set $x_{1}+T, \ldots, x_{n}+T$ for any fixed $T \in \mathbb{R}$.
(b) The variance is 0 if and only if $x_{i}=C, \forall i=1, \ldots, n$ for some constant C. In other words, the variance is 0 if and only if all data points are equal.
(c) The variance is additive, i.e. if x_{1}, \ldots, x_{n} have variance σ_{x}^{2} and $y_{1}, \ldots y_{m}$ have variance σ_{y}^{2}, then the concatenated set $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ has variance $\sigma_{x}^{2}+\sigma_{y}^{2}$.

3. Question 3

A matrix $A \in \mathbb{R}^{d}$ is said to be positive semi-definite if $y^{T} A y \geq 0$ for all $y \in \mathbb{R}^{d \times 1}$. The matrix A is said to be positive definite if it is positive semi-definite and $y^{T} A y=0$ if and only if $y=(0,0, \ldots, 0)$.
(a) Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{1 \times d}$ be data. Let $\Sigma=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{T} x_{i}$ be the covariance matrix. Prove Σ is positive semi-definite.
(b) Is Σ necessarily positive definite?

4. Question 4

When dimension reducing data in \mathbb{R}^{D} with PCA, the choice of embedding dimension is crucial. Many heuristics exist to estimate a good dimension. One is to choose the embedding dimension d^{*} to be the smallest dimension such that some proportion (say, .95) of the variance of the data is preserved by projecting onto the first d^{*} principal components:

$$
d^{*}=\min \left\{\begin{array}{l|l}
d & \frac{\sum_{i=1}^{d} \lambda_{i}}{\sum_{i=1}^{D} \lambda_{i}}>.95
\end{array}\right\} .
$$

(a) Intuitively, when will this give d^{*} small?
(b) Intuitively, when will this give d^{*} big?
(c) Are there any situations in which d^{*} is roughly $.95 * D$?

5. Question 5

Download the corrected 'SalinasA' data fromhttp://www.ehu.eus/ccwintco/index.php/Hyperspectral_ Remote_Sensing_Scenes.
(a) Compute the principal component decomposition of the data.
(b) How many dimensions are needed to preserve 95% of the variance in the data?
(c) Compute and display the first 3 and last 3 principal components. Are there any obvious contrasts?

