Homework 3

MATH 123 - Spring 2023
Tufts University, Department of Mathematics
Due: February 9, 2023

Question 1
Let $x, y \in \mathbb{R}^{d \times 1}$. Prove that $x y^{T} \in \mathbb{R}^{d \times d}$ is rank 1 .
Question 2
Prove that the Euclidean dot product $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}, x, y \in \mathbb{R}^{n}$ is an inner product, where an inner product is a function $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:
(a) For all $x, y \in \mathbb{R}^{n},\langle x, y\rangle=\langle y, x\rangle$.
(b) For all $x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R},\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$.
(c) For all $x, y, z \in \mathbb{R}^{n},\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$.
(d) For all $x \in \mathbb{R}^{n},\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0$ if and only if $x=0$.

Question 3

Suppose M is a symmetric $d \times d$ matrix and $x, y \in \mathbb{R}^{d \times 1}$.
(a) Prove that $\langle x, y\rangle_{M}=x^{\top} M y$ is an inner product if M is positive-definite.
(b) Prove that $\langle x, y\rangle_{M}$ as above need not be an inner product if M is only positive semi-definite.

Question 4

Let $x_{1}, \ldots x_{n} \subset \mathbb{R}^{d}$. Fix some positive integer K. Let C_{1}, \ldots, C_{K} be a partition of the data with centroids μ_{1}, \ldots, μ_{K}. Let

$$
F\left(C_{1}, \ldots, C_{K}\right)=\sum_{k=1}^{K} \sum_{x_{i} \in C_{k}}\left\|\mu_{k}-x_{i}\right\|_{2}^{2}
$$

(a) Prove that, for a fixed K, F achieves a minimum value.
(b) What is the minimum value if $K=n$?

Question 5

Run the MATLAB script 'Kmeans_Gaussians'.
(a) Run K-means with $K=2,100$ replicates. Show the output visually.
(b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
(c) Do the clusters accord with your intuition?

1. Question 6

Run the MATLAB script 'Kmeans_Ellipses'.
(a) Run K-means with $K=2,100$ replicates. Show the output visually.
(b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
(c) Do the clusters accord with your intuition?

