Homework 3 MATH 123 - Spring 2023 Tufts University, Department of Mathematics Due: February 9, 2023

QUESTION 1

Let $x, y \in \mathbb{R}^{d \times 1}$. Prove that $xy^T \in \mathbb{R}^{d \times d}$ is rank 1.

QUESTION 2

Prove that the Euclidean dot product $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$, $x, y \in \mathbb{R}^n$ is an inner product, where an *inner product* is a function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that:

- (a) For all $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \langle y, x \rangle$.
- (b) For all $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.
- (c) For all $x, y, z \in \mathbb{R}^n$, $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

(d) For all $x \in \mathbb{R}^n$, $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ if and only if x = 0.

QUESTION 3

Suppose M is a symmetric $d \times d$ matrix and $x, y \in \mathbb{R}^{d \times 1}$.

- (a) Prove that $\langle x, y \rangle_M = x^\top M y$ is an inner product if M is positive-definite.
- (b) Prove that $\langle x, y \rangle_M$ as above need not be an inner product if M is only positive semi-definite.

QUESTION 4

Let $x_1, \ldots, x_n \subset \mathbb{R}^d$. Fix some positive integer K. Let C_1, \ldots, C_K be a partition of the data with centroids μ_1, \ldots, μ_K . Let

$$F(C_1, \dots, C_K) = \sum_{k=1}^K \sum_{x_i \in C_k} \|\mu_k - x_i\|_2^2$$

- (a) Prove that, for a fixed K, F achieves a minimum value.
- (b) What is the minimum value if K = n?

QUESTION 5

Run the MATLAB script 'Kmeans_Gaussians'.

- (a) Run K-means with K = 2, 100 replicates. Show the output visually.
- (b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
- (c) Do the clusters accord with your intuition?

1. QUESTION 6

Run the MATLAB script 'Kmeans_Ellipses'.

- (a) Run K-means with K = 2, 100 replicates. Show the output visually.
- (b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
- (c) Do the clusters accord with your intuition?