Homework 4

MATH 123 - Spring 2023
Tufts University, Department of Mathematics
Due: February 21, 2023

Question 1
Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{D}$. Let $F: \mathbb{R}^{D} \rightarrow[0, \infty)$ be

$$
F(y)=\sum_{i=1}^{n}\left\|x_{i}-y\right\|_{2}^{2}
$$

Prove that F is minimized for $y=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, i.e. at the mean of $\left\{x_{i}\right\}_{i=1}^{n}$.

Question 2

Suppose $x_{1}, \ldots, x_{n} \subset \mathbb{R}^{D}$ are data, and an outlier x^{o} is added with the property that for $\delta>0$ fixed, $\left\|x_{i}-x^{o}\right\|_{2}>\delta$ for all $i=1, \ldots, n$. Suppose we run K-means on this data with $K=2$.
(a) Argue that as $\delta \rightarrow+\infty$, one of the clusters learned by K-means will consist only of x^{o}.
(b) This lack of robustness to outliers is sometimes considered a defect of K-means. Suggest some changes to the K-means algorithm to improve its robustness to outliers.
(c) Instead of thinking of the lack of robustness to outliers as a defect, can you think of any reasons it may be a virtue?

Question 3

K-means is often combined with a feature extraction step in which the data to be clustered is first transformed to a more convenient form. As the course progresses, we will consider some data-dependent feature extraction methods, but for now, let us consider a very particular feature extraction method: converting Cartesian to polar coordinates in \mathbb{R}^{2}.
(a) Load the data in 'CircularK_Means.m', and run K-means with $K=2$, displaying your labels as colors on the plotted data. In terms of the K-means functional, why does this method produce the "incorrect" clusters it does?
(b) Convert the data to polar coordinates and run K-means again to show the data can be correctly labeled in this case.
(c) Explain what about the polar coordinate representation is convenient for this data.

Question 4

(a) In MATLAB, create a dataset in which single linkage and complete linkage hierarchical clustering differ substantially. Demonstrate this by computing the dendrograms using the built-in 'linkage' function in MATLAB, and arguing that they capture different structure in the data.
(b) Argue why the two linkage methods differ on this data in terms of their mathematical formulation.

