Homework 7 MATH 123 - Spring 2023 Tufts University, Department of Mathematics Due: March 27, 2023

QUESTION 1

Consider the cube in $C_r^D = [-r/2, r/2]^D \subset \mathbb{R}^D$ in *D*-dimensions. Let $\operatorname{vol}_D(A)$ denote the volume of a set A in \mathbb{R}^D , namely $\operatorname{vol}_D(A) = \int_A dx_1 \dots dx_D$.

- (a) Prove using integration that $\operatorname{vol}_D(C_r^D)$ is r^D .
- (b) For $\epsilon > 0$, let $A^D_{\epsilon,r} = \{x \in C^D_r \mid x \notin C^D_{r-\epsilon}\}$. Calculate $\frac{\operatorname{vol}_D(A^D_{\epsilon,r})}{\operatorname{vol}_D(C^D_r)}$.
- (c) Use (b) to argue that "most" of the volume of a high dimensional cube is near the boundary. Can you make this precise?

QUESTION 2

Let $w \in \mathbb{R}^{D \times 1}$.

- (a) Show that $\{x \in \mathbb{R}^{D \times 1} \mid w^T x = 0\}$ is a (D-1)-dimensional linear subspace of \mathbb{R}^D if $w \neq 0$.
- (b) Let $b \in \mathbb{R}$. Is it necessarily the case that $\{x \in \mathbb{R}^{D \times 1} \mid w^T x = b\}$ is a (D-1)-dimensional linear subspace of \mathbb{R}^D ? Prove or given a counterexample.

QUESTION 3

Download the dataset "kNN_ClassifierSyntheticData.mat". Randomly select 100 different testing points in the dataset, and run a kNN-classifier for $kNN = \{1, 10, 50, 100, 500, 900\}$ using the remaining points as training points. How does performance change with the change in kNN?

QUESTION 4

Consider the Salinas A dataset, which may be found at http://www.ehu.eus/ccwintco/index.php/ Hyperspectral_Remote_Sensing_Scenes. Randomly select 100 different testing points in the dataset, and run a kNN-classifier for $kNN = \{1, 10, 50, 100, 500, 900\}$ using the remaining points as training points. How does performance change with kNN?